Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 102(9): e25385, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39305083

RESUMEN

Astrocytes and microglia can adopt two distinct phenotypes in various pathological processes: neurotoxic A1/M1 and neuroprotective A2/M2. Recent evidence suggests that these cells play a significant role in epileptogenesis. The objective of this study was to characterize the phenotype of astrocytes and microglial cells in the hippocampus and temporal cortex of young male Wistar rats at 3 h, 1, 3, and 7 days after pentylenetetrazole-induced seizures. RT-qPCR was employed to examine the expression of glial genes (Gfap, Aif1, Slc1a1, Slc1a2, Slc1a3, Itpr2, Gdnf, Bdnf, Fgf2, Tgfb, Il1b, Tnf, Il1rn, Lcn2, S100a10, Nlrp3, Arg1). The most notable alterations in the expression of glial genes were observed on the first day following seizures in the temporal cortex. An increase in the expression of the Gfap, Slc1a2, Slc1a1, Il1b, Tnfa, Bdnf, and Fgf2 genes, and the A2 astrocyte condition marker S100a10, was observed. An increase in the expression of the Gfap and Slc1a2 genes was observed in the hippocampus on the first day after seizures. However, in contrast to the changes observed in the cortex, the changes in the hippocampus were opposite for the Il1rn, Bdnf, Tgfb, and Arg1 genes. Nevertheless, the alterations in GFAP and EAAT2 protein levels were not corroborated by Western blot analysis. Conversely, a more comprehensive immunohistochemical analysis confirmed an augmentation in the number of GFAP-positive cells in the hippocampus 1 day after seizures. Based on the presented evidence, we can conclude that a single convulsive seizure episode in 3-week-old rats results in transient astroglial activation and polarization to a neuroprotective phenotype (A2).


Asunto(s)
Astrocitos , Hipocampo , Microglía , Pentilenotetrazol , Ratas Wistar , Convulsiones , Lóbulo Temporal , Animales , Masculino , Hipocampo/metabolismo , Hipocampo/patología , Astrocitos/metabolismo , Astrocitos/patología , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/patología , Ratas , Pentilenotetrazol/toxicidad , Microglía/metabolismo , Microglía/patología , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Fenotipo
2.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39337503

RESUMEN

The role of astroglial and microglial cells in the pathogenesis of epilepsy is currently under active investigation. It has been proposed that the activity of these cells may be regulated by the agonists of peroxisome proliferator-activated nuclear receptors (PPARs). This study investigated the effects of a seven-day treatment with the PPAR ß/δ agonist GW0742 (Fitorine, 5 mg/kg/day) on the behavior and gene expression of the astroglial and microglial proteins involved in the regulation of epileptogenesis in the rat brain within a lithium-pilocarpine model of temporal lobe epilepsy (TLE). TLE resulted in decreased social and increased locomotor activity in the rats, increased expression of astro- and microglial activation marker genes (Gfap, Aif1), pro- and anti-inflammatory cytokine genes (Tnfa, Il1b, Il1rn), and altered expression of other microglial (Nlrp3, Arg1) and astroglial (Lcn2, S100a10) genes in the dorsal hippocampus and cerebral cortex. GW0742 attenuated, but did not completely block, some of these impairments. Specifically, the treatment affected Gfap gene expression in the dorsal hippocampus and Aif1 gene expression in the cortex. The GW0742 injections attenuated the TLE-specific enhancement of Nlrp3 and Il1rn gene expression in the cortex. These results suggest that GW0742 may affect the expression of some genes involved in the regulation of epileptogenesis.


Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Microglía , PPAR delta , PPAR-beta , Tiazoles , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ratas , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , Masculino , Tiazoles/farmacología , Tiazoles/uso terapéutico , PPAR-beta/agonistas , PPAR-beta/genética , PPAR-beta/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Pilocarpina/farmacología , Citocinas/metabolismo , Citocinas/genética , Fenoles , Compuestos de Sulfhidrilo
3.
Biomedicines ; 12(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791067

RESUMEN

Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) is a commonly used tool for gene expression analysis. The selection of stably expressed reference genes is required for accurate normalization. The aim of this study was to identify the optimal reference genes for RT-qPCR normalization in various brain regions of rats at different stages of the lithium-pilocarpine model of acquired epilepsy. We tested the expression stability of nine housekeeping genes commonly used as reference genes in brain research: Actb, Gapdh, B2m, Rpl13a, Sdha, Ppia, Hprt1, Pgk1, and Ywhaz. Based on four standard algorithms (geNorm, NormFinder, BestKeeper, and comparative delta-Ct), we found that after pilocarpine-induced status epilepticus, the stability of the tested reference genes varied significantly between brain regions and depended on time after epileptogenesis induction (3 and 7 days in the latent phase, and 2 months in the chronic phase of the model). Pgk1 and Ywhaz were the most stable, while Actb, Sdha, and B2m demonstrated the lowest stability in the analyzed brain areas. We revealed time- and region-specific changes in the mRNA expression of the housekeeping genes B2m, Actb, Sdha, Rpl13a, Gapdh, Hprt1, and Sdha. These changes were more pronounced in the hippocampal region during the latent phase of the model and are thought to be related to epileptogenesis. Thus, RT-qPCR analysis of mRNA expression in acquired epilepsy models requires careful selection of reference genes depending on the brain region and time of analysis. For the time course study of epileptogenesis in the rat lithium-pilocarpine model, we recommend the use of the Pgk1 and Ywhaz genes.

4.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176158

RESUMEN

Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.


Asunto(s)
Bifidobacterium longum , Epilepsia del Lóbulo Temporal , Epilepsia , Probióticos , Ratas , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Pilocarpina/efectos adversos , Litio/farmacología , Hipocampo/metabolismo , Epilepsia/metabolismo , Probióticos/farmacología , Modelos Animales de Enfermedad
5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362260

RESUMEN

Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.


Asunto(s)
Pentilenotetrazol , Receptores de N-Metil-D-Aspartato , Animales , Ratas , Maleato de Dizocilpina , Hipocampo/metabolismo , Plasticidad Neuronal , Pentilenotetrazol/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente
6.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269897

RESUMEN

Preventing epileptogenesis in people at risk is an unmet medical need. Metabotropic glutamate receptors (mGluRs) are promising targets for such therapy. However, drugs acting on mGluRs are not used in the clinic due to limited knowledge of the involvement of mGluRs in epileptogenesis. This study aimed to analyze the changes in gene expression of mGluR subtypes (1-5, 7, 8) in various rat brain regions in the latent and chronic phases of a lithium-pilocarpine model of epilepsy. For this study, multiplex test systems were selected and optimized to analyze mGluR gene expression using RT-qPCR. Region- and phase-specific changes in expression were revealed. During the latent phase, mGluR5 mRNA levels were increased in the dorsal and ventral hippocampus, and expression of group III genes was decreased in the hippocampus and temporal cortex, which could contribute to epileptogenesis. Most of the changes in expression detected in the latent stage were absent in the chronic stage, but mGluR8 mRNA production remained reduced in the hippocampus. Moreover, we found that gene expression of group II mGluRs was altered only in the chronic phase. The study deepened our understanding of the mechanisms of epileptogenesis and suggested that agonists of group III mGluRs are the most promising targets for preventing epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Encéfalo/metabolismo , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Expresión Génica , Hipocampo/metabolismo , Humanos , Litio/farmacología , Pilocarpina , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
7.
Int J Mol Sci ; 23(1)2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35008924

RESUMEN

Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium-pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium-pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.


Asunto(s)
Epilepsia/metabolismo , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Piridinas/farmacología , Convulsiones , Tiazoles/farmacología , Animales , Conducta Animal , Modelos Animales de Enfermedad , Litio , Masculino , Neuronas/efectos de los fármacos , Pilocarpina , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores
8.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445137

RESUMEN

Disrupted glutamate clearance in the synaptic cleft leads to synaptic dysfunction and neurological diseases. Decreased glutamate removal from the synaptic cleft is known to cause excitotoxicity. Data on the physiological effects of increased glutamate clearance are contradictory. This study investigated the consequences of ceftriaxone (CTX), an enhancer of glutamate transporter 1 expression, treatment on long-term synaptic potentiation (LTP) in the hippocampus of young rats. In this study, 5-day administration of CTX (200 mg/kg) significantly weakened LTP in CA3-CA1 synapses. As shown by electrophysiological recordings, LTP attenuation was associated with weakening of N-Methyl-D-aspartate receptor (NMDAR)-dependent signaling in synapses. However, PCR analysis did not show downregulation of NMDAR subunits or changes in the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. We assume that extracellular burst stimulation activates fewer synapses in CTX-treated animals because increased glutamate reuptake results in reduced spillover, and neighboring synapses do not participate in neurotransmission. Attenuation of LTP was not accompanied by noticeable behavioral changes in the CTX group, with no behavioral abnormalities observed in the open field test or Morris water maze test. Thus, our experiments show that increased glutamate clearance can impair long-term synaptic plasticity and that this phenomenon can be considered a potential side effect of CTX treatment.


Asunto(s)
Ceftriaxona/farmacología , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
9.
Biochem Biophys Res Commun ; 569: 174-178, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34252589

RESUMEN

Adenosine deaminase-dependent RNA editing is a widespread universal mechanism of posttranscriptional gene function modulation. Changes in RNA editing level may contribute to various physiological and pathological processes. In the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor GluA2 subunit, A-I editing in the Q607R site leads to dramatic changes in function, making the receptor channel calcium-impermeable. A standard approach for quantifying (un)edited RNAs is based on endpoint PCR (Sanger sequencing or restriction analysis), a time-consuming and semiquantitative method. We aimed to develop RT-qPCR assays to quantify rat Q607R (A-I) edited/unedited mRNA in samples in the present work. Based on self-probing PCR detection chemistry, described initially for detecting short DNA fragments, we designed and optimised RT-qPCR assays to quantify Q607R (un)edited mRNA. We used self-probing primer PCR technology for mRNA quantification for the first time. Using a novel assay, we confirmed that Q607R GluA2 mRNA editing was increased in 14-day- (P14) or 21-day-old (P21) postnatal brain tissue (hippocampus) compared to the embryonic brain (whole brains at E20) in Wistar rats. Q607R unedited GluA2 mRNA was detectable by our assay in the cDNA of mature brain tissue compared to that derived through classical methods. Thus, self-probing primer PCR detection chemistry is an easy-to-use approach for RT-qPCR analysis of RNA editing.


Asunto(s)
Expresión Génica , Hipocampo/metabolismo , Edición de ARN , ARN Mensajero/genética , Receptores AMPA/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Masculino , Sondas de Ácido Nucleico/genética , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Ratas Wistar , Reproducibilidad de los Resultados , Factores de Tiempo
10.
Biochemistry (Mosc) ; 86(6): 761-772, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34225597

RESUMEN

According to the two-hit hypothesis of psychoneuropathology formation, infectious diseases and other pathological conditions occurring during the critical periods of early ontogenesis disrupt normal brain development and increase its susceptibility to stress experienced in adolescence and adulthood. It is believed that these disorders are associated with changes in the functional activity of the glutamatergic system in the hippocampus. Here, we studied expression of NMDA (GluN1, GluN2a, GluN2b) and AMPA (GluA1, GluA2) glutamate receptor subunits, as well as glutamate transporter EAAT2, in the ventral and dorsal regions of the hippocampus of rats injected with LPS during the third postnatal week and then subjected to predator stress (contact with a python) in adulthood. The tests were performed 25 days after the stress. It was found that stress altered protein expression in the ventral, but not in the dorsal hippocampus. Non-stressed LPS-treated rats displayed lower levels of the GluN2b protein in the ventral hippocampus vs. control animals. Stress significantly increased the content of GluN2b in the LPS-treated rats, but not in the control animals. Stress also affected differently the exploratory behavior of LPS-injected and control rats. Compared to the non-stressed animals, stressed control rats demonstrated a higher locomotor activity during the 1st min of the open field test, while the stressed LPS-injected rats displayed lower locomotor activity than the non-stressed rats. In addition, LPS-treated stressed and non-stressed rats spent more time in the open arms of the elevated plus maze and demonstrated reduced blood levels of corticosterone. To summarize the results of our study, exposure to bacterial LPS in the early postnatal ontogenesis affects the pattern of stress-induced changes in the behavior and hippocampal expression of genes coding for ionotropic glutamate receptor subunits after psychogenic trauma suffered in adulthood.


Asunto(s)
Conducta Animal , Hipocampo/metabolismo , Lipopolisacáridos/toxicidad , Receptores Ionotrópicos de Glutamato/genética , Estrés Psicológico/metabolismo , Animales , Animales Recién Nacidos , Regulación de la Expresión Génica , Hipocampo/crecimiento & desarrollo , Masculino , Ratas , Ratas Wistar , Estrés Psicológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA