Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37345097

RESUMEN

(1) Purpose: To determine the borders of malignant gliomas with diffusion kurtosis and perfusion MRI biomarkers. (2) Methods: In 50 high-grade glioma patients, diffusion kurtosis and pseudo-continuous arterial spin labeling (pCASL) cerebral blood flow (CBF) values were determined in contrast-enhancing area, in perifocal infiltrative edema zone, in the normal-appearing peritumoral white matter of the affected cerebral hemisphere, and in the unaffected contralateral hemisphere. Neuronavigation-guided biopsy was performed from all affected hemisphere regions. (3) Results: We showed significant differences between the DKI values in normal-appearing peritumoral white matter and unaffected contralateral hemisphere white matter. We also established significant (p < 0.05) correlations of DKI with Ki-67 labeling index and Bcl-2 expression activity in highly perfused enhancing tumor core and in perifocal infiltrative edema zone. CBF correlated with Ki-67 LI in highly perfused enhancing tumor core. One hundred percent of perifocal infiltrative edema tissue samples contained tumor cells. All glioblastoma samples expressed CD133. In the glioblastoma group, several normal-appearing white matter specimens were infiltrated by tumor cells and expressed CD133. (4) Conclusions: DKI parameters reveal changes in brain microstructure invisible on conventional MRI, e.g., possible infiltration of normal-appearing peritumoral white matter by glioma cells. Our results may be useful for plotting individual tumor invasion maps for brain glioma surgery or radiotherapy planning.

2.
Diagnostics (Basel) ; 12(6)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741254

RESUMEN

The aim of the study was to evaluate the relationship between tumor blood flow (TBF) measured by the pseudo-continuous arterial spin labeling (PCASL) method and IDH1 mutation status of gliomas as well as Ki-67 proliferative index. Methods. The study included 116 patients with newly diagnosed gliomas of various grades. They received no chemotherapy or radiotherapy before MRI. IDH1 status assessment was performed after tumor removal in 106 cases­48 patients were diagnosed with wildtype gliomas (Grade 1−2­6 patients, Grade 3−4­42 patients) and 58 patients were diagnosed with mutant forms of gliomas (Grade 1−2­28 patients, Grade 3−4­30 patients). In 64 cases out of 116 Ki-67 index was measured. Absolute and normalized tumor blood flow values were measured on 3D PCASL maps. Results. TBF and normalized TBF (nTBF) in wildtype gliomas were significantly higher than in IDH1-mutant gliomas (p < 0.001). ASL perfusion showed high values of sensitivity and specificity in the differential diagnosis of gliomas with distinct IDH1 status (for TBF: specificity 75%, sensitivity 77.6%, AUC 0.783, cutoff 80.57 mL/100 g/min, for nTBF: specificity 77.1%, sensitivity 79.3%, AUC 0.791, cutoff 4.7). TBF and nTBF in wildtype high-grade gliomas (HGG) were significantly higher than in mutant forms (p < 0.001). ASL perfusion showed the following values of sensitivity and specificity in the diagnosis of mutant HGG and wildtype HGG (for TBF: specificity 83.3%, sensitivity 60%, AUC 0.719, cutoff 84.18 mL/100 g/min, for nTBF: specificity 88.1%, sensitivity 60%, AUC 0.729, cutoff 4.7). There was a significant positive correlation between tumor blood flow and Ki-67 (for TBF Rs = 0.63, for nTBF Rs = 0.61). Conclusion. ASL perfusion may be an informative factor in determining the IDH1 status in brain gliomas preoperative and tumor proliferative activity.

4.
J Neurosci Methods ; 322: 10-22, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30991031

RESUMEN

PURPOSE: Preoperative functional MRI (fMRI) is limited by a muted BOLD response caused by abnormal vasoreactivity and resultant neurovascular uncoupling adjacent to malignant brain tumors. We propose to overcome this limitation and more accurately identify eloquent areas adjacent to brain tumors by independently assessing vasoreactivity using breath-holding and incorporating these data into the fMRI analysis. METHODS: Local vasoreactivity using a breath-holding paradigm with the same timing as the functional motor and language tasks was determined in 16 patients (9 glioblastomas, 1 anaplastic astrocytoma, 5 low grade astrocytomas, and 1 metastasis) and 6 healthy control subjects. We derived an fMRI model based on an observed vaso-task response dependency that takes into account the altered hemodynamics adjacent to brain tumors. RESULTS: In both healthy controls and brain tumor subjects, we found a statistical dependency between breath-hold and task BOLD response. In tumor subjects, activation maps that take into account this vaso-task dependency demonstrated clinically meaningful areas of activation that were not seen using the task-only analysis in about half of the cases studied. This included localization of language areas adjacent to brain tumors. CONCLUSIONS: The present preliminary results demonstrate that neurovascular uncoupling known to affect the accuracy of BOLD fMRI adjacent to brain tumors may be, at least partially, overcome by incorporating an observed vaso-task dependency in the BOLD signal analysis.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Contencion de la Respiración , Imagen por Resonancia Magnética , Acoplamiento Neurovascular/fisiología , Adulto , Anciano , Mapeo Encefálico , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Cuidados Preoperatorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA