Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(2): 1621-1628, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38157441

RESUMEN

Nano- and microparticles are popular media to enhance optical signals, including fluorescence from a dye proximal to the particle. Here we show that homogeneous, lossless, all-dielectric spheres with diameters in the mesoscale range, between nano- (≲100 nm) and micro- (≳1 µm) scales, can offer surprisingly large fluorescence enhancements, up to F ∼ 104. With the absence of nonradiative Ohmic losses inherent to plasmonic particles, we show that F can increase, decrease or even stay the same with increasing intrinsic quantum yield q0, for suppressed, enhanced or intact radiative decay rates of a fluorophore, respectively. Further, the fluorophore may be located inside or outside the particle, providing additional flexibility and opportunities to design fit for purpose particles. The presented analysis with simple dielectric spheres should spur further interest in this less-explored scale of particles and experimental investigations to realize their potential for applications in imaging, molecular sensing, light coupling, and quantum information processing.

2.
Nanoscale ; 14(2): 433-447, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34904987

RESUMEN

The dependence of plasmon resonance excitations in ultrafine (3-7 nm) gold nanoparticles on heating and melting is investigated. An integrated approach is adopted, where molecular dynamics simulations of the spatial and temporal development of the atoms constituting the nanoparticles generate trajectories out of which system conformations are sampled and extracted for calculations of plasmonic excitation cross sections which then are averaged over the sample configurations for the final result. The calculations of the plasmonic excitations, which take into account the temperature- and size-dependent relaxation of the plasmons, are carried out with a newly developed Extended Discrete Interaction Model (Ex-DIM) and complemented by multilayered Mie theory. The integrated approach clearly demonstrates the conditions for suppression of the plasmons starting at temperatures well below the melting point. We have found a strong inhomogeneous dependence of the atom mobility in the particle crystal lattice increasing from the center to its surface upon the temperature growth. The plasmon resonance suppression is associated with an increase of the mobility and in the amplitude of phonon vibrations of the lattice atoms accompanied by electron-phonon scattering. This leads to an increase in the relaxation constant impeding the plasmon excitation as the major source of the suppression, while the direct contribution from the increase in the lattice constant and its chaotization at melting is found to be minor. Experimental verification of the suppression of surface plasmon resonance is demonstrated for gold nanoparticles on a quartz substrate heated up to the melting temperature and above.

3.
Phys Chem Chem Phys ; 23(1): 173-185, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33313633

RESUMEN

Using the extended discrete interaction model we investigate the tunabilty of surface plasmon resonances in alloys and core-shell nanoparticles made from silver and gold in the small (1-15 nm) nanoscale regime where classical models based on the bulk dielectric constant may not apply. We show that the surface plasmon resonance of these alloys and core-shell particles to a large extent follow Vegard's law irrespective of the geometry of the nanoparticle. The evolution of the polarizability with size demonstrates a highly non-linear behaviour of the polarizability with the ratio of the constituents and geometry in alloys and core-shell nanoparticles, with the exception of the longitudinal surface plasmon resonance in nanorods and, partly, nanodisc alloys. We here show that the non-linear behaviour can be explained in terms of the difference in polarizability of the mixing constituents and local effects causing a quenching of the dipoles for geometries with a low aspect ratio. A thorough statistical investigation reveals that there is only a small dependence of the surface plasmon resonance on atomic arrangement and exact distribution in a nanoparticle and that the standard deviation decreases rapidly with the size of the nanoparticles. The physical ground for the random distribution algorithm for alloys in discrete interaction models is explained in detail and verified by a statistical analysis. For nanoparticles below 4 nm a sampling strategy is recommended.

4.
Phys Chem Chem Phys ; 22(24): 13467-13473, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32520027

RESUMEN

Using the extended discrete interaction model and Mie theory, we investigate the tunability of the optical polarizability of small metallic nano-shells. We show that the spectral positions of symmetric and antisymmetric dipolar plasmon resonances vary with the ratio of particle radius to hole radius in a manner similar to one predicted for uniform metallic nano-shells using a semiclassical approach of two coupled harmonic oscillators. We show that, according to the extended discrete interaction model, the dipolar plasmon resonances are also present for nano-shells in the 2-13 nm size region and show the same functional dependence seen for larger nano-shells. Using previously fitted data from experiment, we can predict the size-dependence of the plasma frequency for nano-shells in the 1-15 nm size region. We find that Mie theory, which utilizes the electron mean free path correction for the permittivity, is not able to reproduce the same functional form of the dipolar modes for the nano-shells of the same sizes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...