Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 241: 114063, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38954939

RESUMEN

Protein crystallization is among the key processes in biomolecular research, but the underlying mechanisms are still elusive. Here, we address the role of inevitable interfaces for the nucleation process. Quartz crystal microbalance with dissipation monitoring (QCM-D) with simultaneously optical microscopy, confocal microscopy, and grazing-incidence small angle X-rays scattering (GISAXS) were employed to investigate the temporal behavior from the initial stage of protein adsorption to crystallization. Here we studied the crystallization of the Human Serum Albumin (HSA), the most abundant blood protein, in the presence of a charged surface and a trivalent salt. We found evidence for interface-assisted nucleation of crystals. The kinetic stages involved are initial adsorption followed by enhanced adsorption after longer times, subsequent nucleation, and finally crystal growth. The results highlight the importance of interfaces for protein phase behavior and in particular for nucleation.

2.
Phys Chem Chem Phys ; 25(35): 23417-23434, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37486006

RESUMEN

We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.

3.
Nat Commun ; 13(1): 892, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173165

RESUMEN

We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters.

4.
Soft Matter ; 18(4): 783-792, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34935830

RESUMEN

We report results of X-ray scattering studies of the angular structure factor of liquid crystal hexatic-B films. According to the sixfold rotational symmetry of the hexatic-B phase, its characteristic scattering splits into six reflections. The shape of the radial and angular cross-sections of these reflections and their temperature evolution are analyzed. We find that over a wide temperature range of the hexatic-B phase existence the angular profiles of the in-plane X-ray scattering are well fitted by the Voigt function, which is a convolution of the Gaussian and Lorentzian functions. This result is supported by the known theoretical considerations of the hexatic structure factor below the smectic-hexatic phase transition temperature. Similar predictions for the angular shape of the hexatic peak in the vicinity of the smectic-hexatic phase transition temperature follow from the multicritical scaling theory of the hexatic-B phase in three dimensions. We find that the specific shape of the hexatic structure factor can be explained by the interplay of two distinct contributions to the free energy of the system, a liquid-like density term and a coupling term between the bond-orientational order and short-range density fluctuations.

5.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34433669

RESUMEN

Neuromorphic computing-which aims to mimic the collective and emergent behavior of the brain's neurons, synapses, axons, and dendrites-offers an intriguing, potentially disruptive solution to society's ever-growing computational needs. Although much progress has been made in designing circuit elements that mimic the behavior of neurons and synapses, challenges remain in designing networks of elements that feature a collective response behavior. We present simulations of networks of circuits and devices based on superconducting and Mott-insulating oxides that display a multiplicity of emergent states that depend on the spatial configuration of the network. Our proposed network designs are based on experimentally known ways of tuning the properties of these oxides using light ions. We show how neuronal and synaptic behavior can be achieved with arrays of superconducting Josephson junction loops, all within the same device. We also show how a multiplicity of synaptic states could be achieved by designing arrays of devices based on hydrogenated rare earth nickelates. Together, our results demonstrate a research platform that utilizes the collective macroscopic properties of quantum materials to mimic the emergent behavior found in biological systems.

6.
J Synchrotron Radiat ; 27(Pt 6): 1626-1632, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147188

RESUMEN

Pump-probe experiments at synchrotrons and free-electron lasers to study ultrafast dynamics in materials far from equilibrium have been well established, but techniques to investigate equilibrium dynamics on the nano- and pico-second timescales remain underdeveloped and experimentally challenging. A promising approach relies on a double-probe X-ray speckle visibility spectroscopy setup at split-and-delay beamlines of X-ray free-electron lasers. However, the logistics in consistently producing two collinear, perfectly overlapping pulses necessary to conduct a faithful experiment is difficult to achieve. In this paper, a method is introduced to extract contrast in the case where an angular misalignment and imperfect overlap exists between the two pulses. Numerical simulations of a dynamical system show that contrast can still be extracted for significant angular misalignments accompanied by partial overlap between the two pulses.

7.
Nat Commun ; 11(1): 2245, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382036

RESUMEN

Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.

9.
Small ; 15(50): e1904954, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31729151

RESUMEN

X-ray nanodiffraction is applied to study the formation and correlation of domain boundaries in mesocrystalline superlattices of PbS nanocrystals with face-centered cubic structure. Each domain of the superlattice can be described with one of two mesocrystalline polymorphs with different orientational orders. Close to a grain boundary, the lattice constant decreases and the superlattice undergoes an out-of-plane rotation, while the orientation of the nanocrystals with respect to the superlattice remains unchanged. These findings are explained with the release of stress on the expense of specific nanocrystal-substrate interactions. The fact that correlations between adjacent nanocrystals are found to survive the structural changes at most grain boundaries implies that the key to nanocrystal superlattices with macroscopic domain sizes are strengthened interactions with the substrate.

10.
Materials (Basel) ; 12(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652689

RESUMEN

Angular X-ray cross-correlation analysis (AXCCA) is a technique which allows quantitative measurement of the angular anisotropy of X-ray diffraction patterns and provides insights into the orientational order in the system under investigation. This method is based on the evaluation of the angular cross-correlation function of the scattered intensity distribution on a two-dimensional (2D) detector and further averaging over many diffraction patterns for enhancement of the anisotropic signal. Over the last decade, AXCCA was successfully used to study the anisotropy in various soft matter systems, such as solutions of anisotropic particles, liquid crystals, colloidal crystals, superlattices composed by nanoparticles, etc. This review provides an introduction to the technique and gives a survey of the recent experimental work in which AXCCA in combination with micro- or nanofocused X-ray microscopy was used to study the orientational order in various soft matter systems.

11.
Struct Dyn ; 6(2): 024301, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30915388

RESUMEN

We applied angular X-ray Cross-Correlation analysis (XCCA) to scattering images from a femtosecond resolution X-ray free-electron laser pump-probe experiment with solvated PtPOP {[Pt2(P2O5H2)4]4-} metal complex molecules. The molecules were pumped with linear polarized laser pulses creating an excited state population with a preferred orientational (alignment) direction. Two time scales of 1.9 ± 1.5 ps and 46 ± 10 ps were revealed by angular XCCA associated with structural changes and rotational dephasing of the solvent molecules, respectively. These results illustrate the potential of XCCA to reveal hidden structural information in the analysis of time-resolved x-ray scattering data from molecules in solution.

12.
Nat Commun ; 9(1): 4498, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374062

RESUMEN

The invention of optical lasers led to a revolution in the field of optics and to the creation of such fields of research as quantum optics. The reason was their unique statistical and coherence properties. The emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet and X-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. FELs are highly spatially coherent to the first-order but in spite of their name, behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The results may be useful for quantum optics experiments and for the design and operation of next generation FEL sources.

13.
Soft Matter ; 14(33): 6849-6856, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30095841

RESUMEN

The structural rearrangement of polystyrene colloidal crystals under dry sintering conditions has been revealed by in situ grazing incidence X-ray scattering. The measured diffraction patterns were analysed using distorted wave Born approximation (DWBA) theory and the structural parameters of the as-grown colloidal crystals of three different particle sizes were determined for the in-plane and out-of-plane directions in a film. By analysing the temperature evolution of the diffraction peak positions, integrated intensities, and widths, the detailed scenario of the structural rearrangement of crystalline domains at the nanoscale has been revealed, including thermal expansion, particle shape transformation and crystal amorphisation. Based on DWBA analysis, we demonstrate that in the process of dry sintering, the shape of colloidal particles in a crystal transforms from a sphere to a polyhedron. Our results deepen the understanding of the thermal annealing of polymer colloidal crystals as an efficient route for the design of new nano-materials.

14.
Nano Lett ; 18(9): 5446-5452, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30033733

RESUMEN

GaN nanowires (NWs) are promising building blocks for future optoelectronic devices and nanoelectronics. They exhibit stronger piezoelectric properties than bulk GaN. This phenomena may be crucial for applications of NWs and makes their study highly important. We report on an investigation of the structure evolution of a single GaN NW under an applied voltage bias along polar [0001] crystallographic direction until its mechanical break. The structural changes were investigated using coherent X-ray Bragg diffraction. The three-dimensional (3D) intensity distributions of the NWs without metal contacts, with contacts, and under applied voltage bias in opposite polar directions were analyzed. Coherent X-ray Bragg diffraction revealed the presence of significant bending of the NWs already after metal contacts deposition, which was increased at applied voltage bias. Employing analytical simulations based on elasticity theory and a finite element method (FEM) approach, we developed a 3D model of the NW bending under applied voltage. From this model and our experimental data, we determined the piezoelectric constant of the GaN NW to be about 7.7 pm/V in [0001] crystallographic direction. The ultimate tensile strength of the GaN NW was obtained to be about 1.22 GPa. Our work demonstrates the power of in operando X-ray structural studies of single NWs for their effective design and implementation with desired functional properties.

15.
Nano Lett ; 17(6): 3511-3517, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28485967

RESUMEN

We show that the combination of X-ray scattering with a nanofocused beam and X-ray cross correlation analysis is an efficient way for the full structural characterization of mesocrystalline nanoparticle assemblies with a single experiment. We analyze several hundred diffraction patterns at individual sample locations, that is, individual grains, to obtain a meaningful statistical distribution of the superlattice and atomic lattice ordering. Simultaneous small- and wide-angle X-ray scattering of the same sample location allows us to determine the structure and orientation of the superlattice as well as the angular correlation of the first two Bragg peaks of the atomic lattices, their orientation with respect to the superlattice, and the average orientational misfit due to local structural disorder. This experiment is particularly advantageous for synthetic mesocrystals made by the simultaneous self-assembly of nanocrystals and surface-functionalization with conductive ligands. While the structural characterization of such materials has been challenging so far, the present method now allows correlating the mesocrystalline structure with optoelectronic properties.

16.
Phys Chem Chem Phys ; 17(11): 7404-10, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25700131

RESUMEN

The hidden structural properties of semicrystalline polymer films are revealed by nanofocused X-ray scattering studies. X-ray cross-correlation analysis (XCCA) is employed to diffraction patterns from blends of poly(3-hexylthiophene) (P3HT) with gold nanoparticles (AuNPs). Spatially resolved maps of orientational distribution of crystalline domains allow us to distinguish sample regions of predominant face-on morphology, with a continuous transition to edge-on morphology. The average size of crystalline domains was determined to be of the order of 10 nm. As compared to pristine P3HT film, the P3HT/AuNPs blend is characterized by substantial ordering of crystalline domains, which can be induced by Au nanoparticles. The inhomogeneous structure of the polymer film is clearly visualized on the spatially resolved nanoscale 2D maps obtained using XCCA. Our results suggest that the observed changes of the polymer matrix within crystalline regions can be attributed to nanoconfinement in the presence of gold nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...