Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Discov Oncol ; 15(1): 219, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856786

RESUMEN

Zinc finger antisense 1 (ZFAS1), a newly discovered long noncoding RNA, is expressed in various tissues and organs and has been introduced an oncogenic gene in human malignancies. In various cancers, ZFAS1 regulates apoptosis, cell proliferation, the cell cycle, migration, translation, rRNA processing, and spliceosomal snRNP assembly; targets signaling cascades; and interacts with transcription factors via binding to key proteins and miRNAs, with conflicting findings on its effect on these processes. ZFAS1 is elevated in different types of cancer, like colorectal, colon, osteosarcoma, and gastric cancer. Considering the ZFAS1 expression pattern, it also has the potential to be a diagnostic or prognostic marker in various cancers. The current review discusses the mode of action of ZFAS1 in various human cancers and its regulation function related to chemoresistance comprehensively, as well as the potential role of ZFAS1 as an effective and noninvasive cancer-specific biomarker in tumor diagnosis, prognosis, and treatment. We expected that the current review could fill the current scientific gaps in the ZFAS1-related cancer causative mechanisms and improve available biomarkers.

2.
Int J Biol Macromol ; 228: 570-581, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36563824

RESUMEN

One of the most vital aspects of the orthopedic implant field has been the development of multifunctional coatings that improve bone-implant contact while simultaneously preventing bacterial infection. The present study investigates the fabrication and characterization of multifunctional polysaccharides, including carboxymethyl cellulose (CMCn) and carboxymethyl chitosan nanofibers (CMCHn), as a novel implant coating on titania nanotube arrays (T). Field emission scanning electron microscopy (FESEM) images revealed a nanofibrous morphology with a narrow diameter for CMCn and CMCHn, similar to extracellular matrix nanostructures. Compared to the T surface, the roughness of CMCn and CMCHn samples increased by over 250 %. An improved cell proliferation rate was observed on CMCHn nanofibers with a positively charged surface caused by the amino groups. Furthermore, in an antibacterial experiment, CMCn and CMCHn inhibited bacterial colony formation by 80 % and 73 %, respectively. According to the results, constructed modified CMCn and CMCHn increased osteoblast cell survival while inhibiting bacterial biofilm formation owing to their surface charge and bioinspired physicochemical properties.


Asunto(s)
Quitosano , Nanofibras , Nanotubos , Quitosano/farmacología , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Titanio/farmacología , Titanio/química , Nanotubos/química , Celulosa/farmacología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA