Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Colloid Interface Sci ; 331: 103240, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024831

RESUMEN

Colloidal particles of spherical shape are important building blocks for nanotechnological applications. Materials with tailored physical properties can be directly synthesized from self-assembled particles, as is the case for colloidal photonic crystals. In addition, colloidal monolayers and multilayers can be exploited as a mask for the fabrication of complex nanostructures via a colloidal lithography process for applications ranging from optoelectronics to sensing. Several techniques have been adopted to modify the shape of both individual colloidal particles and colloidal masks. Thermal treatment of colloidal particles is an effective route to introduce colloidal particle deformation or to manipulate colloidal masks (i.e. to tune the size of the interstices between colloidal particles) by heating them at elevated temperatures above a certain critical temperature for the particle material. In particular, this type of morphological manipulation based on thermal treatments has been extensively applied to polymer particles. Nonetheless, interesting shaping effects have been observed also in inorganic materials, in particular silica particles. Due to their much less complex implementation and distinctive shaping effects in comparison to dry etching or high energy ion beam irradiation, thermal treatments turn out to be a powerful and competitive tool to induce colloidal particle deformation. In this review, we examine the physicochemical principles and mechanisms of heat-induced shaping as well as its experimental implementation. We also explore its applications, going from tailored masks for colloidal lithography to the fabrication of colloidal assemblies directly useful for their intrinsic optical, thermal and mechanical properties (e.g. thermal switches) and even to the synthesis of supraparticles and anisotropic particles, such as doublets.

2.
Nat Methods ; 21(6): 1063-1073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802520

RESUMEN

The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.


Asunto(s)
Membrana Celular , Canales Iónicos , Mecanotransducción Celular , Canales Iónicos/metabolismo , Membrana Celular/metabolismo , Mecanotransducción Celular/fisiología , Humanos , Simulación de Dinámica Molecular , Calcio/metabolismo , Animales
3.
Nano Lett ; 24(14): 4279-4290, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546049

RESUMEN

Mechanical extracellular signals elicit chromatin remodeling via the mechanotransduction pathway, thus determining cellular function. However, the reverse pathway is an open question: does chromatin remodeling shape cells, regulating their adhesion strength? With fluidic force microscopy, we can directly measure the adhesion strength of epithelial cells by driving chromatin compaction to decompaction with chromatin remodelers. We observe that chromatin compaction, induced by performing histone acetyltransferase inhibition or ATP depletion, leads to a reduction in nuclear volume, disrupting actin cytoskeleton and focal adhesion assembly, and ultimately decreases in cell adhesion strength and traction force. Conversely, when chromatin decompaction is drived by removing the remodelers, cells recover their original shape, adhesion strength, and traction force. During chromatin decompaction, cells use depolymerized proteins to restore focal adhesion assemblies rather than neo-synthesized cytoskeletal proteins. We conclude that chromatin remodeling shapes cells, regulating adhesion strength through a reverse mechanotransduction pathway from the nucleus to the cell surface involving RhoA activation.


Asunto(s)
Cromatina , Mecanotransducción Celular , Cromatina/metabolismo , Adhesión Celular , Núcleo Celular/metabolismo , Citoesqueleto de Actina
4.
ACS Nano ; 18(8): 6286-6297, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38355286

RESUMEN

Single-molecule proteomics based on nanopore technology has made significant advances in recent years. However, to achieve nanopore sensing with single amino acid resolution, several bottlenecks must be tackled: controlling nanopore sizes with nanoscale precision and slowing molecular translocation events. Herein, we address these challenges by integrating amino acid-specific DNA aptamers into interface nanopores with dynamically tunable pore sizes. A phenylalanine aptamer was used as a proof-of-concept: aptamer recognition of phenylalanine moieties led to the retention of specific peptides, slowing translocation speeds. Importantly, while phenylalanine aptamers were isolated against the free amino acid, the aptamers were determined to recognize the combination of the benzyl or phenyl and the carbonyl group in the peptide backbone, enabling binding to specific phenylalanine-containing peptides. We decoupled specific binding between aptamers and phenylalanine-containing peptides from nonspecific interactions (e.g., electrostatics and hydrophobic interactions) using optical waveguide lightmode spectroscopy. Aptamer-modified interface nanopores differentiated peptides containing phenylalanine vs. control peptides with structurally similar amino acids (i.e., tyrosine and tryptophan). When the duration of aptamer-target interactions inside the nanopore were prolonged by lowering the applied voltage, discrete ionic current levels with repetitive motifs were observed. Such reoccurring signatures in the measured signal suggest that the proposed method has the possibility to resolve amino acid-specific aptamer recognition, a step toward single-molecule proteomics.


Asunto(s)
Aptámeros de Nucleótidos , Nanoporos , Aminoácidos , Péptidos , Aptámeros de Nucleótidos/química , Fenilalanina
5.
RSC Adv ; 13(20): 13575-13585, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37152573

RESUMEN

As the microelectronics field pushes to increase device density through downscaling component dimensions, various novel micro- and nano-scale additive manufacturing technologies have emerged to expand the small scale design space. These techniques offer unprecedented freedom in designing 3D circuitry but have not yet delivered device-grade materials. To highlight the complex role of processing on the quality and microstructure of AM metals, we report the electrical properties of micrometer-scale copper interconnects fabricated by Fluid Force Microscopy (FluidFM) and Electrohydrodynamic-Redox Printing (EHD-RP). Using a thin film-based 4-terminal testing chip developed for the scope of this study, the electrical resistance of as-printed metals is directly related to print strategies and the specific morphological and microstructural features. Notably, the chip requires direct synthesis of conductive structures on an insulating substrate, which is shown for the first time in the case of FluidFM. Finally, we demonstrate the unique ability of EHD-RP to tune the materials resistivity by one order of magnitude solely through printing voltage. Through its novel electrical characterization approach, this study offers unique insight into the electrical properties of micro- and submicrometer-sized copper interconnects and steps towards a deeper understanding of micro AM metal properties for advanced electronics applications.

6.
Nano Lett ; 23(7): 2467-2475, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975035

RESUMEN

Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.


Asunto(s)
Adhesión Celular , Matriz Extracelular , Adhesiones Focales , Mecanotransducción Celular , Animales , Humanos , Adhesión Celular/fisiología , Membrana Celular/fisiología , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Mamíferos/anatomía & histología , Mamíferos/fisiología , Fenómenos Mecánicos , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica/métodos , Matriz Extracelular/fisiología
7.
Sci Adv ; 8(50): eadd8570, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525484

RESUMEN

Granular hydrogels have been increasingly exploited in biomedical applications, including wound healing and cardiac repair. Despite their utility, design guidelines for engineering their macroscale properties remain limited, as we do not understand how the properties of granular hydrogels emerge from collective interactions of their microgel building blocks. In this work, we related building block features (stiffness and size) to the macroscale properties of granular hydrogels using contact mechanics. We investigated the mechanics of the microgel packings through dynamic oscillatory rheology. In addition, we modeled the system as a collection of two-body interactions and applied the Zwanzig and Mountain formula to calculate the plateau modulus and viscosity of the granular hydrogels. The calculations agreed with the dynamic mechanical measurements and described how microgel properties and contact deformations define the rheology of granular hydrogels. These results support a rational design framework for improved engineering of this fascinating class of materials.

8.
Nature ; 608(7924): 733-740, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978187

RESUMEN

Single-cell transcriptomics (scRNA-seq) has greatly advanced our ability to characterize cellular heterogeneity1. However, scRNA-seq requires lysing cells, which impedes further molecular or functional analyses on the same cells. Here, we established Live-seq, a single-cell transcriptome profiling approach that preserves cell viability during RNA extraction using fluidic force microscopy2,3, thus allowing to couple a cell's ground-state transcriptome to its downstream molecular or phenotypic behaviour. To benchmark Live-seq, we used cell growth, functional responses and whole-cell transcriptome read-outs to demonstrate that Live-seq can accurately stratify diverse cell types and states without inducing major cellular perturbations. As a proof of concept, we show that Live-seq can be used to directly map a cell's trajectory by sequentially profiling the transcriptomes of individual macrophages before and after lipopolysaccharide (LPS) stimulation, and of adipose stromal cells pre- and post-differentiation. In addition, we demonstrate that Live-seq can function as a transcriptomic recorder by preregistering the transcriptomes of individual macrophages that were subsequently monitored by time-lapse imaging after LPS exposure. This enabled the unsupervised, genome-wide ranking of genes on the basis of their ability to affect macrophage LPS response heterogeneity, revealing basal Nfkbia expression level and cell cycle state as important phenotypic determinants, which we experimentally validated. Thus, Live-seq can address a broad range of biological questions by transforming scRNA-seq from an end-point to a temporal analysis approach.


Asunto(s)
Supervivencia Celular , Perfilación de la Expresión Génica , Macrófagos , RNA-Seq , Análisis de la Célula Individual , Transcriptoma , Tejido Adiposo/citología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Diferenciación Celular , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Genoma/efectos de los fármacos , Genoma/genética , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Inhibidor NF-kappaB alfa/genética , Especificidad de Órganos , Fenotipo , ARN/genética , ARN/aislamiento & purificación , RNA-Seq/métodos , RNA-Seq/normas , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/normas , Análisis de la Célula Individual/métodos , Células del Estroma/citología , Células del Estroma/metabolismo , Factores de Tiempo , Transcriptoma/genética
9.
Adv Colloid Interface Sci ; 304: 102642, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35569386

RESUMEN

Ion beam irradiation of spherical colloidal particles is a viable route to induce particle deformation, especially to get anisotropic shapes. Even though less common in comparison with dry etching techniques, different types of morphological changes can be attained depending on the process parameters (angle of incidence, energy, fluence of the ion beam, type of ion, temperature) and on particle material and initial particle arrangement (crystalline or disordered, made up of isolated or closely-packed particles). The technique can be harnessed to get anisotropic deformation of spherical colloidal particles into an ellipsoidal shape, but also to tailor the interstices between closely-packed colloidal particles, to get particle necking and coalescence as well as particle rearrangement. As such, particle deformation based on ion irradiation can find diverse applications from synthesis of ellipsoidal particles to modified templates for colloidal lithography. In this review, we examine in detail the principles and models of colloidal particle shaping via ion beam irradiation, the influence of process parameters on particle morphology and the applications of irradiated particles.

10.
Commun Biol ; 5(1): 180, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233064

RESUMEN

The direct delivery of molecules and the sampling of endogenous compounds into and from living cells provide powerful means to modulate and study cellular functions. Intracellular injection and extraction remain challenging for fungal cells that possess a cell wall. The most common methods for intracellular delivery into fungi rely on the initial degradation of the cell wall to generate protoplasts, a step that represents a major bottleneck in terms of time, efficiency, standardization, and cell viability. Here, we show that fluidic force microscopy enables the injection of solutions and cytoplasmic fluid extraction into and out of individual fungal cells, including unicellular model yeasts and multicellular filamentous fungi. The approach is strain- and cargo-independent and opens new opportunities for manipulating and analyzing fungi. We also perturb individual hyphal compartments within intact mycelial networks to study the cellular response at the single cell level.


Asunto(s)
Hongos , Hifa , Pared Celular/metabolismo , Hongos/fisiología , Micelio , Levaduras
11.
PLoS Biol ; 20(3): e3001576, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35320264

RESUMEN

Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells. To date, it has been difficult to manipulate organelle structures within single live cells. We developed a FluidFM-based approach to extract, inject, and transplant organelles from and into living cells with subcellular spatial resolution. The technology combines atomic force microscopy, optical microscopy, and nanofluidics to achieve force and volume control with real-time inspection. We developed dedicated probes that allow minimally invasive entry into cells and optimized fluid flow to extract specific organelles. When extracting single or a defined number of mitochondria, their morphology transforms into a pearls-on-a-string phenotype due to locally applied fluidic forces. We show that the induced transition is calcium independent and results in isolated, intact mitochondria. Upon cell-to-cell transplantation, the transferred mitochondria fuse to the host cells mitochondrial network. Transplantation of healthy and drug-impaired mitochondria into primary keratinocytes allowed monitoring of mitochondrial subpopulation rescue. Fusion with the mitochondrial network of recipient cells occurred 20 minutes after transplantation and continued for over 16 hours. After transfer of mitochondria and cell propagation over generations, donor mitochondrial DNA (mtDNA) was replicated in recipient cells without the need for selection pressure. The approach opens new prospects for the study of organelle physiology and homeostasis, but also for therapy, mechanobiology, and synthetic biology.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Calcio , Homeostasis , Mitocondrias/fisiología , Orgánulos
12.
Nanotechnology ; 33(26)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35240592

RESUMEN

Additive manufacturing can realize almost any designed geometry, enabling the fabrication of innovative products for advanced applications. Local electrochemical plating is a powerful approach for additive manufacturing of metal microstructures; however, previously reported data have been mostly obtained with copper, and only a few cases have been reported with other elements. In this study, we assessed the ability of fluidic force microscopy to produce Ni-Mn and Ni-Co alloy structures. Once the optimal deposition potential window was determined, pillars with relatively smooth surfaces were obtained. The printing process was characterized by printing rates in the range of 50-60 nm s-1. Cross-sections exposed by focused ion beam showed highly dense microstructures, while the corresponding face scan with energy-dispersive x-ray spectroscopy spectra revealed a uniform distribution of alloy components.

13.
Adv Colloid Interface Sci ; 299: 102538, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34906837

RESUMEN

Monolayers of self-assembled quasi-spherical colloidal particles are essential building blocks in the field of materials science and engineering. More typically, they are used as a template for the fabrication of nanostructures if they serve, for instance, as a mask for deposition of new material on the surface on which particles are assembled or for etching of the material underneath; in this case, they are removed afterwards. This is what occurs in colloidal or nanosphere lithography. In some other cases, they are not used as a sacrificial material but they are incorporated in the final structure because they are inherently interesting for their properties. Independently of their specific use and application, different strategies have been devised in order to modify size and shape of colloidal particles, so as to enrich the variety of attainable patterns and to tailor the properties of the final structures and materials. In this review, we will focus on one of the most widespread methods to shape spherical colloidal particles, i.e. dry etching techniques. We will follow the development of such approaches until recent days, so as to trace an extensive panorama of the diverse parameters that can be harnessed to achieve specific morphological changes and highlight the characteristic features of the variants of this method. We will finally discuss how particles modified via dry etching can be used for patterning or can be resuspended in solvents for very diverse applications.

14.
Nano Lett ; 21(21): 9093-9101, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699726

RESUMEN

Nanoscale 3D printing is attracting attention as an alternative manufacturing technique for a variety of applications from electronics and nanooptics to sensing, nanorobotics, and energy storage. The constantly shrinking critical dimension in state-of-the-art technologies requires fabrication of complex conductive structures with nanometer resolution. Electrochemical techniques are capable of producing impurity-free metallic conductors with superb electrical and mechanical properties, however, true nanoscale resolution (<100 nm) remained unattainable. Here, we set new a benchmark in electrochemical 3D printing. By employing nozzles with dimensions as small as 1 nm, we demonstrate layer-by-layer manufacturing of 25 nm diameter voxels. Full control of the printing process allows adjustment of the feature size on-the-fly, printing tilted, and overhanging structures. On the basis of experimental evidence, we estimate the limits of electrochemical 3D printing and discuss the origins of this new resolution frontier.


Asunto(s)
Electrónica , Impresión Tridimensional , Conductividad Eléctrica , Técnicas Electroquímicas
15.
J Colloid Interface Sci ; 604: 785-797, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34303172

RESUMEN

Understanding the molecular mechanisms underlying bubble-(bio)surfaces interactions is currently a challenge that if overcame, would allow to understand and control the various processes in which they are involved. Atomic force microscopy is a useful technique to measure such interactions, but it is limited by the large size and instability of the bubbles that it can use, attached either on cantilevers or on surfaces. We here present new developments where microsized and stable bubbles are produced using FluidFM technology, which combines AFM and microfluidics. The air bubbles produced were used to probe the interactions with hydrophobic samples, showing that bubbles in water behave like hydrophobic surfaces. They thus could be used to measure the hydrophobic properties of microorganisms' surfaces, but in this case the interactions are also influenced by electrostatic forces. Finally a strategy was developed to functionalize their surface, thereby modulating their interactions with microorganism interfaces. This new method provides a valuable tool to understand bubble-(bio)surfaces interactions but also to engineer them.


Asunto(s)
Aire , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Microfluídica , Microscopía de Fuerza Atómica
16.
Nano Lett ; 21(12): 4911-4920, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34081865

RESUMEN

Endothelial senescence entails alterations of the healthy cell phenotype, which accumulate over time and contribute to cardiovascular disease. Mechanical aspects regulating cell adhesion, force generation, and the response to flow contribute to the senescence-associated drift; however, they remain largely unexplored. Here, we exploit force microscopy to resolve variations of the cell anchoring to the substrate and the tractions generated upon aging in the nanonewton (nN) range. Senescent endothelial cells display a multifold increase in the levels of basal adhesion and force generation supported by mature and strong focal adhesions. The enhanced mechanical interaction with the substrate yields static endothelial monolayers that polarize in response to flow but fail the process of coordinated cell shape remodeling and reorientation. The emerging picture indicates that senescence reinforces the local cell interaction with the substrate and may therefore prevent endothelial denudation; however, it compromises the ability to functionally adapt to the local hemodynamic conditions.


Asunto(s)
Células Endoteliales , Adhesiones Focales , Adhesión Celular , Comunicación Celular , Células Cultivadas , Estrés Mecánico
17.
J Nanobiotechnology ; 18(1): 147, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081777

RESUMEN

BACKGROUND: The mechanical properties of single living cells have proven to be a powerful marker of the cell physiological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat them as a homogeneous elastic material and describe it in terms of the Young's modulus. Beside its simplicity, this approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high throughput phenotyping in diagnostic and prognostic applications. RESULTS: Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indentation depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin cortex, in addition to the standard Young's modulus. CONCLUSIONS: The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a detailed and complex description of the intracellular structure.


Asunto(s)
Actinas/química , Análisis de la Célula Individual/métodos , Citoesqueleto de Actina/metabolismo , Encéfalo , Línea Celular , Módulo de Elasticidad , Elasticidad , Humanos , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Nanotecnología , Análisis Espectral , Estrés Mecánico
18.
ACS Nano ; 14(10): 12993-13003, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32914961

RESUMEN

Nanopore sensing of single nucleotides has emerged as a promising single-molecule technology for DNA sequencing and proteomics. Despite the conceptual simplicity of nanopores, adoption of this technology for practical applications has been limited by a lack of pore size adjustability and an inability to perform long-term recordings in complex solutions. Here we introduce a method for fast and precise on-demand formation of a nanopore with controllable size between 2 and 20 nm through force-controlled adjustment of the nanospace formed between the opening of a microfluidic device (made of silicon nitride) and a soft polymeric substrate. The introduced nanopore system enables stable measurements at arbitrary locations. By accurately positioning the nanopore in the proximity of single neurons and continuously recording single-molecule translations over several hours, we have demonstrated this is a powerful approach for single-cell proteomics and secretomics.


Asunto(s)
Nanoporos , ADN , Nanotecnología , Análisis de Secuencia de ADN
19.
Adv Colloid Interface Sci ; 284: 102252, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32971396

RESUMEN

Characterization of the morphology, identification of patterns and quantification of order encountered in colloidal assemblies is essential for several reasons. First of all, it is useful to compare different self-assembly methods and assess the influence of different process parameters on the final colloidal pattern. In addition, casting light on the structures formed by colloidal particles can help to get better insight into colloidal interactions and understand phase transitions. Finally, the growing interest in colloidal assemblies in materials science for practical applications going from optoelectronics to biosensing imposes a thorough characterization of the morphology of colloidal assemblies because of the intimate relationship between morphology and physical properties (e.g. optical and mechanical) of a material. Several image analysis techniques developed to investigate images (acquired via scanning electron microscopy, digital video microscopy and other imaging methods) provide variegated and complementary information on the colloidal structures under scrutiny. However, understanding how to use such image analysis tools to get information on the characteristics of the colloidal assemblies may represent a non-trivial task, because it requires the combination of approaches drawn from diverse disciplines such as image processing, computational geometry and computational topology and their application to a primarily physico-chemical process. Moreover, the lack of a systematic description of such analysis tools makes it difficult to select the ones more suitable for the features of the colloidal assembly under examination. In this review we provide a methodical and extensive description of real-space image analysis tools by explaining their principles and their application to the investigation of two-dimensional colloidal assemblies with different morphological characteristics.

20.
Adv Funct Mater ; 30(28): 1910491, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32684902

RESUMEN

Many emerging applications in microscale engineering rely on the fabrication of 3D architectures in inorganic materials. Small-scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, the synthesis of device-grade inorganic materials is still a key challenge toward the implementation of AM in microfabrication. Here, a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state-of-the-art AM methods that offer a spatial resolution ≤10 µm is presented. Standardized sets of samples are studied by cross-sectional electron microscopy, nanoindentation, and microcompression. It is shown that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin-film nanocrystalline materials. The large variation in materials' performance can be related to the individual microstructure, which in turn is coupled to the various physico-chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small-scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects-a significant step toward the potential establishment of AM techniques in microfabrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA