Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Res ; 26(1): 50, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183134

RESUMEN

Wound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate. Notably, the field of tissue engineering has grown significantly in the last several years, in part, due to the diverse properties and applications of polymeric biomaterials. The interdisciplinary cohesion of the chemical, biological, physical, and material sciences is pertinent to advancing our current understanding of biomaterials and generating new wound care modalities. However, there is still room for closing the gap between the clinical and material science realms in order to more effectively develop novel wound care therapies that aid in the treatment of complex wounds. Thus, in this review, we discuss key material science principles in the context of polymeric biomaterials, provide a clinical breadth to discuss how these properties affect wound dressing design, and the role of polymeric biomaterials in the innovation and design of the next generation of wound dressings.

2.
Wound Repair Regen ; 30(1): 64-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618990

RESUMEN

Negative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized. In situ histological analysis revealed that NPWT enhanced plasma protein adsorption throughout the GranuFoam™, resulting in increased cellular colonization and tissue ingrowth. Gram staining revealed that NPWT decreased bacterial dissemination to adjacent tissue with greater bacterial localization within the GranuFoam™. Genomic analysis demonstrated the significant changes in gene expression across a number of genes between wounds treated with non-NPWT and NPWT when compared against baseline tissue. However, minimal differences were noted between non-NPWT and NPWT wounds, including no significant differences in expression of collagen, angiogenic, or key inflammatory genes. Similarly, significant increases in immune cell populations were observed from day 0 to day 9 for both non-NPWT and NPWT wounds, though no differences were noted between non-NPWT and NPWT wounds. Furthermore, histological analysis demonstrated the presence of a foreign body response (FBR), with giant cell formation and encapsulation of GranuFoam™ particles. The unique in situ histological evaluation and genomic comparison of non-NPWT and NPWT wounds in this pilot study provided a never-before-shown perspective, offering novel insights into the physiological processes of NPWT and the potential role of a FBR in NPWT clinical outcomes.


Asunto(s)
Terapia de Presión Negativa para Heridas , Cicatrización de Heridas , Animales , Vendajes , Proyectos Piloto , Porcinos
3.
J Biomed Mater Res B Appl Biomater ; 109(12): 1967-1985, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34002476

RESUMEN

The process of wound healing includes four phases: Hemostasis, inflammation, proliferation, and remodeling. Many wound dressings and technologies have been developed to enhance the body's ability to close wounds and restore the function of damaged tissues. Several advancements in wound healing technology have resulted from innovative experiments by individual scientists or physicians working independently. The interplay between the medical and scientific research fields is vital to translating new discoveries in the lab to treatments at the bedside. Tracing the history of wound dressing development reveals that there is an opportunity for deeper collaboration between multiple disciplines to accelerate the advancement of novel wound healing technologies. In this review, we explore the different types of wound dressings and biomaterials used to treat wounds, and we investigate the role of multidisciplinary collaboration in the development of various wound management technologies to illustrate the benefit of direct collaboration between physicians and scientists.


Asunto(s)
Vendajes , Cicatrización de Heridas , Materiales Biocompatibles
4.
Dent J (Basel) ; 4(3)2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-29563472

RESUMEN

Negative pressure wound therapy has greatly advanced the field of wound healing for nearly two decades, by providing a robust surgical adjunct technique for accelerating wound closure in acute and chronic wounds. However, the application of negative pressure wound therapy in maxillofacial applications has been relatively under utilized as a result of the physical articulations and contours of the head and neck that make it challenging to obtain an airtight seal for different negative pressure wound therapy systems. Adapting negative pressure wound therapies for maxillofacial applications could yield significant enhancement of wound closure in maxillofacial applications. The current review summarizes the basic science underlying negative pressure wound therapy, as well as specific maxillofacial procedures that could benefit from negative pressure wound therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA