Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 27(3): 820-834.e9, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995479

RESUMEN

Inhibition of oxidative phosphorylation (OXPHOS) by 1-cyclopropyl-4-(4-[(5-methyl-3-(3-[4-(trifluoromethoxy)phenyl]-1,2,4-oxadiazol-5-yl)-1H-pyrazol-1-yl)methyl]pyridin-2-yl)piperazine (BAY87-2243, abbreviated as B87), a complex I inhibitor, fails to kill human cancer cells in vitro. Driven by this consideration, we attempted to identify agents that engage in synthetically lethal interactions with B87. Here, we report that dimethyl α-ketoglutarate (DMKG), a cell-permeable precursor of α-ketoglutarate that lacks toxicity on its own, kills cancer cells when combined with B87 or other inhibitors of OXPHOS. DMKG improved the antineoplastic effect of B87, both in vitro and in vivo. This combination caused MDM2-dependent, tumor suppressor protein p53 (TP53)-independent transcriptional reprogramming and alternative exon usage affecting multiple glycolytic enzymes, completely blocking glycolysis. Simultaneous inhibition of OXPHOS and glycolysis provoked a bioenergetic catastrophe culminating in the activation of a cell death program that involved disruption of the mitochondrial network and activation of PARP1, AIFM1, and APEX1. These results unveil a metabolic liability of human cancer cells that may be harnessed for the development of therapeutic regimens.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Ácidos Cetoglutáricos/farmacología , Animales , Factor Inductor de la Apoptosis/metabolismo , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Femenino , Glucólisis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Oxadiazoles/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirazoles/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Cell Death Dis ; 10(4): 301, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944306

RESUMEN

In the version of this article originally submitted, it was stated that the first three authors (Shaoyi_ Than, Yan Wang, Wei Xie) had contributed equally. However, in the published version this information was missing.

3.
Cell Death Dis ; 10(3): 242, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858361

RESUMEN

Cystic fibrosis is a disease caused by defective function of a chloride channel coupled to a blockade of autophagic flux. It has been proposed to use synthetic chloride transporters as pharmacological agents to compensate insufficient chloride fluxes. Here, we report that such chloride anionophores block autophagic flux in spite of the fact that they activate the pro-autophagic transcription factor EB (TFEB) coupled to the inhibition of the autophagy-suppressive mTORC1 kinase activity. Two synthetic chloride transporters (SQ1 and SQ2) caused a partially TFEB-dependent relocation of the autophagic marker LC3 to the Golgi apparatus. Inhibition of TFEB activation using a calcium chelator or calcineurin inhibitors reduced the formation of LC3 puncta in cells, yet did not affect the cytotoxic action of SQ1 and SQ2 that could be observed after prolonged incubation. In conclusion, the squaramide-based synthetic chloride transporters studied in this work (which can also dissipate pH gradients) are probably not appropriate for the treatment of cystic fibrosis yet might be used for other indications such as cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hidrocarburos Fluorados/farmacología , Transporte Iónico/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/antagonistas & inhibidores , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Muerte Celular , Línea Celular Tumoral , Aparato de Golgi/efectos de los fármacos , Humanos , Hidrocarburos Fluorados/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/genética , Regulación hacia Arriba
4.
Cell Death Dis ; 9(2): 191, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29415993

RESUMEN

Cystic Fibrosis (CF) due to the ΔF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) can be treated with a combination of cysteamine and Epigallocatechin gallate (EGCG). Since ECGC is not a clinically approved drug, we attempted to identify other compounds that might favourably interact with cysteamine to induce autophagy and thus rescuing the function of ΔF508 CFTR as a chloride channel in the plasma membrane. For this, we screened a compound library composed by chemically diverse autophagy inducers for their ability to enhance autophagic flux in the presence of cysteamine. We identified the antiarrhythmic Ca2+ channel blocker amiodarone, as an FDA-approved drug having the property to cooperate with cysteamine to stimulate autophagy in an additive manner. Amiodarone promoted the re-expression of ΔF508 CFTR protein in the plasma membrane of respiratory epithelial cells. Hence, amiodarone might be yet another compound for the etiological therapy of CF in patients bearing the ΔF508 CFTR mutation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Autofagia/efectos de los fármacos , Bronquios/citología , Catequina/análogos & derivados , Catequina/farmacología , Línea Celular , Línea Celular Tumoral , Cisteamina/farmacología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Humanos , Transfección
5.
Mol Cell ; 53(5): 710-25, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560926

RESUMEN

Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.


Asunto(s)
Acetilcoenzima A/química , Autofagia , Citosol/enzimología , Regulación Enzimológica de la Expresión Génica , Adenosina Trifosfato/química , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Proteína p300 Asociada a E1A/química , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HeLa , Humanos , Ácidos Cetoglutáricos/química , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo
6.
Cell Cycle ; 11(20): 3851-60, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23070521

RESUMEN

Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called "French paradox," i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components.


Asunto(s)
Autofagia/efectos de los fármacos , Citoplasma/efectos de los fármacos , Polifenoles/farmacología , Sirtuina 1/genética , Estilbenos/farmacología , Acetilación , Autofagia/fisiología , Línea Celular Tumoral , Citoplasma/enzimología , Activación Enzimática/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Microscopía Fluorescente , Resveratrol , Sirtuina 1/metabolismo
8.
Apoptosis ; 12(5): 803-13, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17294081

RESUMEN

Mitochondrial membrane permeabilization (MMP) is considered as the "point-of-no-return" in numerous models of programmed cell death. Indeed, mitochondria determine the intrinsic pathway of apoptosis, and play a major role in the extrinsic route as well. MMP affects the inner and outer mitochondrial membranes (IM and OM, respectively) to a variable degree. OM permeabilization culminates in the release of proteins that normally are confined in the mitochondrial intermembrane space (IMS), including caspase activators (e.g. cytochrome c) and caspase-independent death effectors (e.g. apoptosis-inducing factor). Partial IM permeabilization disrupts mitochondrial ion and volume homeostasis and dissipates the mitochondrial transmembrane potential (DeltaPsi(m)). The assessment of early mitochondrial alterations allows for the identification of cells that are committed to die but have not displayed yet the apoptotic phenotype. Several techniques to measure MMP by cytofluorometry and fluorescence microscopy have been developed. Here, we summarize the currently available methods for the detection of MMP, and provide a comparative analysis of these techniques.


Asunto(s)
Apoptosis/fisiología , Potenciales de la Membrana/fisiología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Humanos , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Permeabilidad
10.
Biochim Biophys Acta ; 1659(2-3): 178-89, 2004 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-15576050

RESUMEN

Mitochondrial membrane permeabilization (MMP) is a critical step regulating apoptosis. Viruses have evolved multiple strategies to modulate apoptosis for their own benefit. Thus, many viruses code for proteins that act on mitochondria and control apoptosis of infected cells. Viral proapoptotic proteins translocate to mitochondrial membranes and induce MMP, which is often accompanied by mitochondrial swelling and fragmentation. From a structural point of view, all the viral proapoptotic proteins discovered so far contain amphipathic alpha-helices that are necessary for the proapoptotic effects and seem to have pore-forming properties, as it has been shown for Vpr from human immunodeficiency virus-1 (HIV-1) and HBx from hepatitis B virus (HBV). In contrast, antiapoptotic viral proteins (e.g., M11L from myxoma virus, F1L from vaccinia virus and BHRF1 from Epstein-Barr virus) contain mitochondrial targeting sequences (MTS) in their C-terminus that are homologous to tail-anchoring domains. These domains are similar to those present in many proteins of the Bcl-2 family and are responsible for inserting the protein in the outer mitochondrial membrane leaving the N-terminus of the protein facing the cytosol. The antiapoptotic proteins K7 and K15 from avian encephalomyelitis virus (AEV) and viral mitochondria inhibitor of apoptosis (vMIA) from cytomegalovirus are capable of binding host-specific apoptosis-modulatory proteins such as Bax, Bcl-2, activated caspase 3, CAML, CIDE-B and HAX. In conclusion, viruses modulate apoptosis at the mitochondrial level by multiple different strategies.


Asunto(s)
Apoptosis/fisiología , Virus ADN/metabolismo , Mitocondrias/metabolismo , Virus ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Muerte Celular/fisiología , Productos del Gen vpr/metabolismo , VIH-1/metabolismo , Datos de Secuencia Molecular , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana
11.
Proc Natl Acad Sci U S A ; 101(21): 7988-93, 2004 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-15148411

RESUMEN

We report that the cytomegalovirus-encoded cell death suppressor vMIA binds Bax and prevents Bax-mediated mitochondrial membrane permeabilization by sequestering Bax at mitochondria in the form of a vMIA-Bax complex. vMIA mutants with a defective mitochondria-targeting domain retain their Bax-binding function but not their ability to suppress mitochondrial membrane permeabilization or cell death. vMIA does not seem to either specifically associate with Bak or suppress Bak-mediated mitochondrial membrane permeabilization. Recent evidence suggests that the contribution of Bax and Bak in the mitochondrial apoptotic signaling pathway depends on the distinct phenotypes of cells, and it appears from our data that vMIA is capable of suppressing apoptosis in cells in which this pathway is dominated by Bax, but not in cells where Bak also plays a role.


Asunto(s)
Apoptosis , Citomegalovirus/química , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Virales/metabolismo , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3 , Proteínas Portadoras/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular , Fibroblastos , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/patología , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Proteínas Virales/química , Proteínas Virales/genética , Proteína Destructora del Antagonista Homólogo bcl-2 , Proteína X Asociada a bcl-2
12.
Methods Mol Biol ; 282: 103-15, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15105559

RESUMEN

Mitochondrial membrane permeabilization (MMP) constitutes an early event of the apoptotic process. MMP affects both mitochondrial membranes. Inner MMP leads to the dissipation of the inner transmembrane potential and outer MMP culminates in the efflux of apoptogenic factors. The exact molecular mechanisms of MMP are still controversial. A growing body of data suggests that the cell death regulatory activity of Bcl-2 family members depends, at least in some instances, on their ability to modulate the opening of the mitochondrial permeability transition pore complex. Here, we will detail some experimental protocols designed to measure mitochondrial membrane potential and permeability transition, either in intact cells or in isolated mitochondria.


Asunto(s)
Apoptosis/fisiología , Potenciales de la Membrana , Mitocondrias/metabolismo , Animales , Células Cultivadas , Hepatocitos/citología , Ratones , Permeabilidad , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas
13.
J Biol Chem ; 279(21): 22605-14, 2004 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-15004026

RESUMEN

The viral mitochondria-localized inhibitor of apoptosis (vMIA), encoded by the UL37 gene of human cytomegalovirus, inhibits apoptosis-associated mitochondrial membrane permeabilization by a mechanism different from that of Bcl-2. Here we show that vMIA induces several changes in Bax that resemble those found in apoptotic cells yet take place in unstimulated, non-apoptotic vMIA-expressing cells. These changes include the constitutive localization of Bax at mitochondria, where it associates tightly with the mitochondrial membrane, forming high molecular weight aggregates that contain vMIA. vMIA recruits Bax to mitochondria but delays relocation of caspase-8-activated truncated Bid-green fluorescent protein (GFP) (t-Bid-GFP) to mitochondria. The ability of vMIA and its deletion mutants to associate with Bax and to induce relocation of Bax to mitochondria correlates with their anti-apoptotic activity and with their ability to suppress mitochondrial membrane permeabilization. Taken together, our data indicate that vMIA blocks apoptosis via its interaction with Bax. vMIA neutralizes Bax by recruiting it to mitochondria and "freezing" its pro-apoptotic activity. These data unravel a novel strategy of subverting an intrinsic pathway of apoptotic signaling.


Asunto(s)
Apoptosis , Proteínas Inmediatas-Precoces/biosíntesis , Proteínas Inmediatas-Precoces/fisiología , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/metabolismo , Proteínas Virales/fisiología , Animales , Caspasa 8 , Caspasas/metabolismo , Línea Celular , Sistema Libre de Células , Células Cultivadas , Cromatografía en Gel , Citocromos c/metabolismo , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Pruebas de Precipitina , Transfección , Proteína X Asociada a bcl-2
14.
Biochem Pharmacol ; 66(8): 1321-9, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14555204

RESUMEN

Cells expressing the envelope glycoprotein complex (Env) encoded by the human immunodeficiency virus can fuse with cells expressing Env receptors (CD4 and CXCR4). The resulting syncytia undergo apoptosis. We developed a cytofluorometric assay for the quantitation of syncytium formation and syncytial apoptosis. Using this methodology, we show that caspase activation in syncytia is inhibited by pharmacological or genetic intervention on cyclin-dependent kinase-1, p53, and mitochondrial membrane permeabilization (MMP). Thus, transfection of fusing cells with the viral mitochondrial inhibitor of apoptosis encoded by cytomegalovirus, a specific inhibitor of MMP, prevented the mitochondrial cytochrome c release and abolished simultaneously the activation of caspase-3. Conversely, inhibition of caspases did not prevent MMP. These results indicate that Env-elicited syncytial apoptosis involves the intrinsic (mitochondrial) pathway.


Asunto(s)
Apoptosis , Caspasas/metabolismo , VIH-1/química , Mitocondrias/efectos de los fármacos , Proteínas del Envoltorio Viral/farmacología , Proteína Quinasa CDC2/metabolismo , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Citometría de Flujo , Células Gigantes/patología , Células Gigantes/virología , Células HeLa , Humanos , Mitocondrias/enzimología
15.
J Neurochem ; 85(6): 1431-42, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12787063

RESUMEN

Blockade of mitochondrial permeability transition protects against hypoglycemic brain damage. To study the mechanisms downstream from mitochondria that may cause neuronal death, we investigated the effects of cyclosporin A on subcellular localization of apoptosis-inducing factor and cytochrome c, activation of the cysteine proteases calpain and caspase-3, as well as its effect on brain extracellular calcium concentrations. Redistribution of cytochrome c occurred at 30 min of iso-electricity, whereas translocation of apoptosis-inducing factor to nuclei occurred at 30 min of recovery following 30 min of iso-electricity. Active caspase-3 and calpain-induced fodrin breakdown products were barely detectable in the dentate gyrus and CA1 region of the hippocampus of rat brain exposed to 30 or 60 min of insulin-induced hypoglycemia. However, 30 min or 3 h after recovery of blood glucose levels, fodrin breakdown products and active caspase-3 markedly increased, concomitant with a twofold increase in caspase-3-like enzymatic activity. When rats were treated with neuroprotective doses of cyclosporin A, but not with FK 506, the redistribution of apoptosis-inducing factor and cytochrome c was reduced and fodrin breakdown products and active caspase-3 immuno-reactivity was diminished whereas the extracellular calcium concentration was unaffected. We conclude that hypoglycemia leads to mitochondrial permeability transition which, upon recovery of energy metabolism, mediates the activation of caspase-3 and calpains, promoting cell death.


Asunto(s)
Calcio/metabolismo , Calpaína/metabolismo , Ciclosporina/farmacología , Hipoglucemia/metabolismo , Neuronas/efectos de los fármacos , Animales , Factor Inductor de la Apoptosis , Caspasa 3 , Caspasas/metabolismo , Recuento de Células , Grupo Citocromo c/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Activación Enzimática/efectos de los fármacos , Flavoproteínas/metabolismo , Líquido Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Microelectrodos , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Tacrolimus/farmacología
16.
J Exp Med ; 197(10): 1323-34, 2003 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-12756268

RESUMEN

A number of diseases are due to lysosomal destabilization, which results in damaging cell loss. To investigate the mechanisms of lysosomal cell death, we characterized the cytotoxic action of two widely used quinolone antibiotics: ciprofloxacin (CPX) or norfloxacin (NFX). CPX or NFX plus UV light (NFX*) induce lysosomal membrane permeabilization (LMP), as detected by the release of cathepsins from lysosomes. Inhibition of the lysosomal accumulation of CPX or NFX suppresses their capacity to induce LMP and to kill cells. CPX- or NFX-triggered LMP results in caspase-independent cell death, with hallmarks of apoptosis such as chromatin condensation and phosphatidylserine exposure on the plasma membrane. LMP triggers mitochondrial membrane permeabilization (MMP), as detected by the release of cytochrome c. Both CPX and NFX* cause Bax and Bak to adopt their apoptotic conformation and to insert into mitochondrial membranes. Bax-/- Bak-/- double knockout cells fail to undergo MMP and cell death in response to CPX- or NFX-induced LMP. The single knockout of Bax or Bak (but not Bid) or the transfection-enforced expression of mitochondrion-targeted (but not endoplasmic reticulum-targeted) Bcl-2 conferred protection against CPX (but not NFX*)-induced MMP and death. Altogether, our data indicate that mitochondria are indispensable for cell death initiated by lysosomal destabilization.


Asunto(s)
Apoptosis , Permeabilidad de la Membrana Celular , Lisosomas/metabolismo , Mitocondrias/fisiología , Clorometilcetonas de Aminoácidos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ciprofloxacina/farmacología , Células HeLa , Humanos , Proteínas de la Membrana/fisiología , Metaloendopeptidasas/fisiología , Norfloxacino/farmacología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Especies Reactivas de Oxígeno , Proteína Destructora del Antagonista Homólogo bcl-2 , Proteína X Asociada a bcl-2
17.
Biochem Biophys Res Commun ; 304(3): 575-81, 2003 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12729592

RESUMEN

During coevolution with their hosts, viruses have "learned" to intercept or to activate the principal signal transducing pathways leading to cell death. A number of proteins from pathophysiologically relevant viruses are targeted to mitochondria and regulate (induce or inhibit) the apoptosis-associated permeabilization of mitochondrial membranes. Such proteins are encoded by human immunodeficiency virus 1, Kaposi's sarcoma-associated herpesvirus, human T-cell leukemia virus-1, hepatitis B virus, cytomegalovirus, and Epstein Barr virus, among others. Within mitochondria, such apoptosis regulators from viral origin can target distinct proteins from the Bcl-2 family and the permeability transition pore complex including the adenine nucleotide translocase, cyclophilin D, the voltage-dependent anion channel, and the peripheral benzodiazepine receptor. Thus, viral proteins can regulate apoptosis at the mitochondrial level by acting on a variety of different targets.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Proteínas Virales/farmacología , Animales , Permeabilidad de la Membrana Celular , Membranas Intracelulares/metabolismo , Ratones , Proteínas Mitocondriales/fisiología
18.
J Leukoc Biol ; 73(3): 399-406, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12629154

RESUMEN

We analyzed the mechanism of UVB-induced cell death using the Jurkat T cell line. Apoptosis was assessed by measuring phosphatidylserine (PS) externalization, caspase activity, the decrease in mitochondrial membrane potential (Delta Psi m), nucleosomal DNA fragmentation, and morphological changes such as chromatin condensation. The mitochondrio-nuclear translocation of apoptosis-inducing factor (AIF) was evaluated by confocal laser microscopy. The cell death pattern of UVB-irradiated cells was similar to the Fas-induced cell death pattern. However, zVAD-fmk inhibited the nucleosomal fragmentation of DNA but not the externalization of PS, decrease in Delta Psi m, or mitochondrio-nuclear translocation of AIF. N-acetyl L-cysteine significantly inhibited the translocation of AIF induced by UVB. These results suggested that caspase-dependent and -independent pathways were involved in UVB-induced cell death in Jurkat cells, and the mitochondrio-nuclear translocation of AIF was associated with the latter pathway. In addition, reactive oxygen species generated by UVB might be involved in inducing the mitochondrio-nuclear translocation of AIF.


Asunto(s)
Muerte Celular/efectos de la radiación , Flavoproteínas/fisiología , Proteínas de la Membrana/fisiología , Especies Reactivas de Oxígeno/efectos de la radiación , Linfocitos T/efectos de la radiación , Rayos Ultravioleta , Factor Inductor de la Apoptosis , Caspasas/metabolismo , Núcleo Celular/metabolismo , Flavoproteínas/metabolismo , Flavoproteínas/efectos de la radiación , Humanos , Células Jurkat , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/efectos de la radiación , Mitocondrias/metabolismo , Transporte de Proteínas/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/citología
19.
Curr Biol ; 13(2): R71-3, 2003 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-12546810

RESUMEN

One critical step of apoptosis is the release of mitochondrial proteins through the outer mitochondrial membrane. Recent work shows that two pro-apoptotic Bcl-2 family proteins, Bax and Bid, as well as the mitochondrion-specific lipid cardiolipin may cooperate in chemically defined liposomes to generate a protein-permeable conduit, relaunching the debate on the identity of the pore responsible for mitochondrial membrane permeabilization during apoptosis.


Asunto(s)
Apoptosis/fisiología , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3 , Cardiolipinas/metabolismo , Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Modelos Biológicos , Permeabilidad , Proteínas Proto-Oncogénicas/metabolismo , Proteína X Asociada a bcl-2
20.
J Immunol Methods ; 265(1-2): 39-47, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12072177

RESUMEN

Mitochondria undergo two major changes during early apoptosis. On the one hand, the outer mitochondrial membrane becomes permeable to proteins, resulting in the release of soluble intermembrane proteins (SIMPs) from the mitochondrion. On the other hand, the inner mitochondrial membrane transmembrane potential (DeltaPsi(m)) is reduced. These changes occur in most, if not all, models of cell death and can be taken advantage of to detect apoptosis at an early stage. Here, we delineate methods for the detection of alterations in the DeltaPsi(m), based on the incubation of cells with cationic lipophilic fluorochromes, the uptake of which is driven by the DeltaPsi(m). Certain DeltaPsi(m)-sensitive dyes can be combined with other fluorochromes to detect simultaneously cellular viability, plasma membrane exposure of phosphatidylserine residues, or the mitochondrial production of reactive oxygen species (ROS). In addition, we describe an immunofluorescence method for the detection of two functionally important proteins translocating from mitochondria, namely, the caspase co-activator cytochrome c and the caspase-independent death effector apoptosis inducing factor (AIF).


Asunto(s)
Mitocondrias/fisiología , Animales , Apoptosis/fisiología , Transporte Biológico , Humanos , Potenciales de la Membrana , Microscopía Fluorescente , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...