Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 618(7966): 687-697, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344649

RESUMEN

Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.

2.
Opt Lett ; 45(21): 5966-5969, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137042

RESUMEN

The interaction of optical and mechanical degrees of freedom can lead to several interesting effects. A prominent example is the phenomenon of optomechanically induced transparency (OMIT), in which mechanical movements induce a narrow transparency window in the spectrum of an optical mode. In this Letter, we demonstrate the relevance of optomechanical topological insulators for achieving OMIT. More specifically, we show that the strong interaction between optical and mechanical edge modes of a one-dimensional topological optomechanical crystal can render the system transparent within a very narrow frequency range. Since the topology of a system cannot be changed by slight to moderate levels of disorder, the achieved transparency is robust against geometrical perturbations. This is in sharp contrast to trivial OMIT which has a strong dependency on the geometry of the optomechanical system. Our findings hold promise for a wide range of applications such as filtering, signal processing, and slow-light devices.

3.
Phys Rev Lett ; 125(5): 054301, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794863

RESUMEN

Depending on the geometry of their Fermi surfaces, Weyl semimetals and their analogs in classical systems have been classified into two types. In type-I Weyl semimetals (WSMs), the conelike spectrum at the Weyl point is not tilted, leading to a pointlike closed Fermi surface. In type-II WSMs, on the contrary, the energy spectrum around the Weyl point is strongly tilted such that the Fermi surface transforms from a point into an open surface. Here, we demonstrate, both theoretically and experimentally, a new type of (classical) Weyl semimetal whose Fermi surface is neither a point nor a surface, but a flat line. The distinctive Fermi surfaces of such semimetals, dubbed as type-III or zero-index WSMs, gives rise to unique physical properties: one of the edge modes of the semimetal exhibits a zero index of refraction along a specific direction, in stark contrast to type-I and type-II WSMs for which the index of refraction is always nonzero. We show that the zero-index response of such topological phases enables exciting applications such as extraordinary wave transmission.

4.
Adv Mater ; 32(28): e2001034, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32484279

RESUMEN

Disorder, ubiquitously present in realistic structures, is generally thought to disturb the performance of analog wave devices, as it often causes strong multiple scattering effects that largely arrest wave transportation. Contrary to this general view, here, it is shown that, in some wave systems with nontrivial topological character, strong randomness can be highly beneficial, acting as a powerful stimulator to enable desired analog filtering operations. This is achieved in a topological Anderson sonic crystal that, in the regime of dominating randomness, provides a well-defined filtering response characterized by a Lorentzian spectral line-shape. The theoretical and experimental results, serving as the first realization of topological Anderson insulator phase in acoustics, suggest the striking possibility of achieving specific, nonrandom analog filtering operations by adding randomness to clean structures.

5.
Phys Rev Lett ; 123(5): 053902, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491328

RESUMEN

We demonstrate, both theoretically and experimentally, the concept of nonlinear second-order topological insulators, a class of bulk insulators with quantized Wannier centers and a bulk polarization directly controlled by the level of nonlinearity. We show that one-dimensional edge states and zero-dimensional corner states can be induced in a trivial crystal insulator made of evanescently coupled resonators with linear and nonlinear coupling coefficients, simply by tuning the intensity. This allows global external control over topological phase transitions and switching to a phase with nonzero bulk polarization, without requiring any structural or geometrical changes. We further show how these nonlinear effects enable dynamic tuning of the spectral properties and localization of the topological edge and corner states. Such self-induced second-order topological insulators, which can be found and implemented in a wide variety of physical platforms ranging from electronics to microwaves, acoustics, and optics, hold exciting promises for reconfigurable topological energy confinement, power harvesting, data storage, and spatial management of high-intensity fields.

6.
J Acoust Soc Am ; 146(1): 843, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31370653

RESUMEN

Waveguide hybrid junctions, such as Magic-T and rat-race couplers, have been of great interest in microwave technology not only for their applications in power monitoring, but also for design and synthesis of various non-reciprocal devices including electromagnetic circulators and isolators. Here, an acoustic rat-race coupler is designed and demonstrated for the first time, working on the basis of constructive and destructive interferences between the clockwise and counterclockwise of a ring resonator. It is then shown how the sound isolation provided by such a coupler enables the realization of an acoustic four-port circulator, a device which has not been reported as yet. Many other promising acoustic devices comprising power combiners, power dividers, mixers, and modulators can be envisioned to be implemented based on the proposed rat-race coupler.

7.
Nat Commun ; 10(1): 2058, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053711

RESUMEN

Analog signal processors have attracted a tremendous amount of attention recently, as they potentially offer much faster operation and lower power consumption than their digital versions. Yet, they are not preferable for large scale applications due to the considerable observational errors caused by their excessive sensitivity to environmental and structural variations. Here, we demonstrate both theoretically and experimentally the unique relevance of topological insulators for alleviating the unreliability of analog signal processors. In particular, we achieve an important signal processing task, namely resolution of linear differential equations, in an analog system that is protected by topology against large levels of disorder and geometrical perturbations. We believe that our strategy opens up large perspectives for a new generation of robust all-optical analog signal processors, which can now not only perform ultrafast, high-throughput, and power efficient signal processing tasks, but also compete with their digital counterparts in terms of reliability and flexibility.

8.
Phys Rev Lett ; 122(1): 014301, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012649

RESUMEN

The Fano resonance is a widespread wave scattering phenomenon associated with a peculiar asymmetric and ultrasharp line shape, which has found applications in a large variety of prominent optical devices. While its substantial sensitivity to geometrical and environmental changes makes it the cornerstone of efficient sensors, it also renders the practical realization of Fano-based systems extremely challenging. Here, we introduce the concept of topological Fano resonance, whose ultrasharp asymmetric line shape is guaranteed by design and protected against geometrical imperfections, yet remaining sensitive to external parameters. We report the experimental observation of such resonances in an acoustic system, and demonstrate their inherent robustness to geometrical disorder. Such topologically protected Fano resonances, which can also be found in microwave, optical, and plasmonic systems, open up exciting frontiers for the generation of various reliable wave-based devices including low-threshold lasers, perfect absorbers, ultrafast switches or modulators, and highly accurate interferometers, by circumventing the performance degradations caused by inadvertent fabrication flaws.

9.
Sci Rep ; 8(1): 10401, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991688

RESUMEN

High index optical waveguide devices such as slab waveguides, strip waveguides and fibers play extremely important roles in a wide range of modern applications including telecommunications, sensing, lasing, interferometry, and resonant amplification. Yet, transposing these advantageous applications from optics to acoustics remains a fundamental practical challenge, since most materials exhibit refractive indices lower than that of air for sound waves. Here, we demonstrate the relevance of acoustic metamaterials for tackling this pivotal problem. More specifically, we consider a metamaterial built from subwavelength air-filled acoustic pipes engineered to effectively exhibit a higher refractive index than homogenous air. We show that such medium can be employed to realize acoustic equivalents of dielectric slab or strip waveguides, and optical fibers. Unlike conventional acoustic pipes, our guiding approach allows the waveguide to remain open to the external medium, which opens an abundance of new opportunities in noise management, medical imaging, underwater communication systems, and sensing.

10.
Opt Lett ; 42(10): 1954-1957, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504768

RESUMEN

In this contribution a new approach to perform spatial integration is presented using a dielectric slab. Our approach is indeed based on the fact that the transmission coefficient of a simple dielectric slab at its mode excitation angle matches the Fourier-Green's function of first-order integration. Inspired by the mentioned dielectric-based integrator, we further demonstrate its graphene-based counterpart. The latter is not only reconfigurable but also highly miniaturized in contrast to the previously reported designs [Opt. Commun.338, 457 (2015)OPCOB80030-401810.1016/j.optcom.2014.11.007]. Such integrators have the potential to be used in ultrafast analog computation and signal processing.

11.
Opt Lett ; 41(15): 3467-70, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27472595

RESUMEN

Optical computing has emerged as a promising candidate for real-time and parallel continuous data processing. Motivated by recent progresses in metamaterial-based analog computing [Science343, 160 (2014)SCIEAS0036-807510.1126/science.1242818], we theoretically investigate the realization of two-dimensional complex mathematical operations using rotated configurations, recently reported in [Opt. Lett.39, 1278 (2014)OPLEDP0146-959210.1364/OL.39.001278]. Breaking the reflection symmetry, such configurations could realize both even and odd Green's functions associated with spatial operators. Based on such an appealing theory and by using the Brewster effect, we demonstrate realization of a first-order differentiator. Such an efficient wave-based computation method not only circumvents the major potential drawbacks of metamaterials, but also offers the most compact possible device compared to conventional bulky lens-based optical signal and data processors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA