Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 75(8): 1062-1067, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29651552

RESUMEN

Among the viridans group streptococci, S. mitis-oralis strains are frequently resistant to multiple ß-lactams and tolerant to vancomycin (VAN). This scenario has led to the proposed clinical use of newer agents, like daptomycin (DAP) for such S. mitis-oralis strains. However, recent recognition of the rapid and durable emergence of high-level DAP-resistance (DAP-R; DAP MICs > 256 µg/ml) induced by DAP exposures in vitro and in vivo has dampened enthusiasm for such approaches. In this study, we evaluated a broad range of DAP combination regimens in vitro for their capacity to prevent emergence of high-level DAP-R in a prototype S. mitis-oralis strain (351) during serial passage experiments, including DAP + either gentamicin (GEN), rifampin (RIF), trimethoprim-sulfamethoxazole (TMP-SMX), imipenem (IMP), ceftaroline (CPT), tedizolid (TDZ), or linezolid (LDZ). In addition, we assessed selected DAP combination regimens for their ability to exert either an early bactericidal impact and/or synergistically kill the S. mitis-oralis study strain. During serial passage, three of the eight antibiotic combinations (DAP + GEN, CPT, or TMP- SMX) exhibited significantly reduced DAP MICs (≈ by 8-40 fold) vs serial exposure in DAP alone (DAP MICs > 256 µg/ml). In addition, combinations of DAP + GEN and DAP + CPT were both bactericidal and synergistic in early time-kill curve interactions.


Asunto(s)
Antibacterianos/farmacología , Daptomicina/farmacología , Streptococcus mitis/efectos de los fármacos , Streptococcus oralis/efectos de los fármacos , Cefalosporinas/farmacología , Combinación de Medicamentos , Farmacorresistencia Bacteriana , Gentamicinas/farmacología , Humanos , Imipenem/farmacología , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Organofosfatos/farmacología , Oxazoles/farmacología , Rifampin/farmacología , Combinación Trimetoprim y Sulfametoxazol/farmacología , Ceftarolina
2.
PLoS One ; 13(2): e0192215, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29390006

RESUMEN

Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-negative endocarditis. While C. burnetii initially infects alveolar macrophages, it has also been found in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis patients. In addition, transcriptional studies of C. burnetii-infected macrophages reported differential regulation of the LD coat protein-encoding gene perilipin 2 (plin-2). To further investigate the relationship between LDs and C. burnetii, we compared LD numbers using fluorescence microscopy in mock-infected and C. burnetii-infected alveolar macrophages. On average, C. burnetii-infected macrophages contained twice as many LDs as mock-infected macrophages. LD numbers increased as early as 24 hours post-infection, an effect reversed by blocking C. burnetii protein synthesis. The observed LD accumulation was dependent on the C. burnetii Type 4B Secretion System (T4BSS), a major virulence factor that manipulates host cellular processes by secreting bacterial effector proteins into the host cell cytoplasm. To determine the importance of LDs during C. burnetii infection, we manipulated LD homeostasis and assessed C. burnetii intracellular growth. Surprisingly, blocking LD formation with the pharmacological inhibitors triacsin C or T863, or knocking out acyl-CoA transferase-1 (acat-1) in alveolar macrophages, increased C. burnetii growth at least 2-fold. Conversely, preventing LD lipolysis by inhibiting adipose triglyceride lipase (ATGL) with atglistatin almost completely blocked bacterial growth, suggesting LD breakdown is essential for C. burnetii. Together these data suggest that maintenance of LD homeostasis, possibly via the C. burnetii T4BSS, is critical for bacterial growth.


Asunto(s)
Coxiella burnetii/metabolismo , Homeostasis , Metabolismo de los Lípidos , Proteínas Bacterianas/metabolismo , Coxiella burnetii/genética , Coxiella burnetii/crecimiento & desarrollo , Macrófagos/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA