Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; : e0131124, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287436

RESUMEN

Bacterial shape and division rely on the dynamics of cell wall assembly, which involves regulated synthesis and cleavage of the peptidoglycan. In ovococci, these processes are coordinated within an annular mid-cell region with nanometric dimensions. More precisely, the cross-wall synthesized by the divisome is split to generate a lateral wall, whose expansion is insured by the insertion of the so-called peripheral peptidoglycan by the elongasome. Septum cleavage and peripheral peptidoglycan synthesis are, thus, crucial remodeling events for ovococcal cell division and elongation. The structural DivIVA protein has long been known as a major regulator of these processes, but its mode of action remains unknown. Here, we integrate click chemistry-based peptidoglycan labeling, direct stochastic optical reconstruction microscopy, and in silico modeling, as well as epifluorescence and stimulated emission depletion microscopy to investigate the role of DivIVA in Streptococcus pneumoniae cell morphogenesis. Our work reveals two distinct phases of peptidoglycan remodeling during the cell cycle that are differentially controlled by DivIVA. In particular, we show that DivIVA ensures homogeneous septum cleavage and peripheral peptidoglycan synthesis around the division site and their maintenance throughout the cell cycle. Our data additionally suggest that DivIVA impacts the contribution of the elongasome and class A penicillin-binding proteins to cell elongation. We also report the position of DivIVA on either side of the septum, consistent with its known affinity for negatively curved membranes. Finally, we take the opportunity provided by these new observations to propose hypotheses for the mechanism of action of this key morphogenetic protein.IMPORTANCEThis study sheds light on fundamental processes governing bacterial growth and division, using integrated click chemistry, advanced microscopy, and computational modeling approaches. It addresses cell wall synthesis mechanisms in the opportunistic human pathogen Streptococcus pneumoniae, responsible for a range of illnesses (otitis, pneumonia, meningitis, septicemia) and for one million deaths every year worldwide. This bacterium belongs to the morphological group of ovococci, which includes many streptococcal and enterococcal pathogens. In this study, we have dissected the function of DivIVA, which is a structural protein involved in cell division, morphogenesis, and chromosome partitioning in Gram-positive bacteria. This work unveils the role of DivIVA in the orchestration of cell division and elongation along the pneumococcal cell cycle. It not only enhances our understanding of how ovoid bacteria proliferate but also offers the opportunity to consider how DivIVA might serve as a scaffold and sensor for particular membrane regions, thereby participating in various cell cycle processes.

2.
Curr Biol ; 31(13): 2844-2856.e6, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33989523

RESUMEN

Dynamics of cell elongation and septation are key determinants of bacterial morphogenesis. These processes are intimately linked to peptidoglycan synthesis performed by macromolecular complexes called the elongasome and the divisome. In rod-shaped bacteria, cell elongation and septation, which are dissociated in time and space, have been well described. By contrast, in ovoid-shaped bacteria, the dynamics and relationships between these processes remain poorly understood because they are concomitant and confined to a nanometer-scale annular region at midcell. Here, we set up a metabolic peptidoglycan labeling approach using click chemistry to image peptidoglycan synthesis by single-molecule localization microscopy in the ovoid bacterium Streptococcus pneumoniae. Our nanoscale-resolution data reveal spatiotemporal features of peptidoglycan assembly and fate along the cell cycle and provide geometrical parameters that we used to construct a morphogenesis model of the ovoid cell. These analyses show that septal and peripheral peptidoglycan syntheses first occur within a single annular region that later separates in two concentric regions and that elongation persists after septation is completed. In addition, our data reveal that freshly synthesized peptidoglycan is remodeled all along the cell cycle. Altogether, our work provides evidence that septal peptidoglycan is synthesized from the beginning of the cell cycle and is constantly remodeled through cleavage and insertion of material at its periphery. The ovoid-cell morphogenesis would thus rely on the relative dynamics between peptidoglycan synthesis and cleavage rather than on the existence of two distinct successive phases of peripheral and septal synthesis.


Asunto(s)
Peptidoglicano , Streptococcus pneumoniae , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Ciclo Celular , División Celular , Pared Celular/metabolismo , Peptidoglicano/metabolismo , Streptococcus pneumoniae/metabolismo
3.
Front Microbiol ; 10: 351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936851

RESUMEN

The coexistence of different lipid phases is well-known in vitro, but evidence for their presence and function in cellular membranes remains scarce. Using a combination of fluorescent lipid probes, we observe segregation of domains that suggests the coexistence of liquid and gel phases in the membrane of Streptococcus pneumoniae, where they are localized to minimize bending stress in the ellipsoid geometry defined by the cell wall. Gel phase lipids with high bending rigidity would be spontaneously organized at the equator where curvature is minimal, thus marking the future division site, while liquid phase membrane maps onto the oblong hemispheres. In addition, the membrane-bound cell wall precursor with its particular dynamic acyl chain localizes at the division site where the membrane is highly curved. We propose a complete "chicken-and-egg" model where cell geometry determines the localization of lipid phases that positions the cell division machinery, which in turn alters the localization of lamellar phases by assembling the cell wall with a specific geometry.

4.
Nat Commun ; 9(1): 3180, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093673

RESUMEN

The universality of peptidoglycan in bacteria underlies the broad spectrum of many successful antibiotics. However, in our times of widespread resistance, the diversity of peptidoglycan modifications offers a variety of new antibacterials targets. In some Gram-positive species such as Streptococcus pneumoniae, Staphylococcus aureus, or Mycobacterium tuberculosis, the second residue of the peptidoglycan precursor, D-glutamate, is amidated into iso-D-glutamine by the essential amidotransferase MurT/GatD complex. Here, we present the structure of this complex at 3.0 Å resolution. MurT has central and C-terminal domains similar to Mur ligases with a cysteine-rich insertion, which probably binds zinc, contributing to the interface with GatD. The mechanism of amidation by MurT is likely similar to the condensation catalyzed by Mur ligases. GatD is a glutaminase providing ammonia that is likely channeled to the MurT active site through a cavity network. The structure and assay presented here constitute a knowledge base for future drug development studies.


Asunto(s)
Proteínas Bacterianas/química , Oxidorreductasas/química , Peptidoglicano/química , Streptococcus pneumoniae/enzimología , Antibacterianos/metabolismo , Dominio Catalítico , Pared Celular/metabolismo , Ácido Glutámico/metabolismo , Glutaminasa/metabolismo , Glutamina/metabolismo , Lípidos/química , Mycobacterium tuberculosis/metabolismo , Dominios Proteicos , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Compuestos de Sulfhidrilo/química
5.
ACS Chem Biol ; 13(8): 2010-2015, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30010316

RESUMEN

A method for labeling teichoic acids in the human pathogen Streptococcus pneumoniae has been developed using a one-pot two-step metabolic labeling approach. The essential nutriment choline modified with an azido-group was incorporated and exposed at the cell surface more rapidly than it reacted with the strain promoted azide alkyne cycloaddition (SPAAC) partner also present in the medium. Once at the cell surface on teichoic acids, coupling of the azido group could then occur within 5 min by the bio-orthogonal click reaction with a DIBO-linked fluorophore. This fast and easy method allowed pulse-chase experiments and was combined with another fluorescent labeling approach to compare the insertion of teichoic acids with peptidoglycan synthesis with unprecedented temporal resolution. It has revealed that teichoic acid and peptidoglycan processes are largely concomitant, but teichoic acid insertion persists later at the division site.


Asunto(s)
Pared Celular/química , Colorantes Fluorescentes/química , Sondas Moleculares/química , Peptidoglicano/química , Ácidos Teicoicos/química , Alquinos/química , Alquinos/metabolismo , Azidas/química , Azidas/metabolismo , Colina/análogos & derivados , Colina/química , Colina/metabolismo , Química Clic , Reacción de Cicloadición , Ciclooctanos/química , Sondas Moleculares/metabolismo , Peptidoglicano/biosíntesis , Streptococcus pneumoniae/química , Ácidos Teicoicos/biosíntesis
6.
J Biol Chem ; 292(7): 2854-2865, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28062575

RESUMEN

Pneumococcus resists ß-lactams by expressing variants of its target enzymes, the penicillin-binding proteins (PBPs), with many amino acid substitutions. Up to 10% of the sequence can be modified. These altered PBPs have a much reduced reactivity with the drugs but retain their physiological activity of cross-linking the peptidoglycan, the major constituent of the bacterial cell wall. However, because ß-lactams are chemical and structural mimics of the natural substrate, resistance mediated by altered PBPs raises the following paradox: how PBPs that react poorly with the drugs maintain a sufficient level of activity with the physiological substrate. This question is addressed for the first time in this study, which compares the peptidoglycan cross-linking activity of PBP2b from susceptible and resistant strains with their inhibition by different ß-lactams. Unexpectedly, the enzymatic activity of the variants did not correlate with their antibiotic reactivity. This finding indicates that some of the numerous amino acid substitutions were selected to restore a viable level of enzymatic activity by a compensatory molecular mechanism.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Proteínas de Unión a las Penicilinas/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , beta-Lactamas/farmacología , Secuencia de Aminoácidos , Cefalosporinas/metabolismo , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Desnaturalización Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Streptococcus pneumoniae/metabolismo
7.
Antibiotics (Basel) ; 5(4)2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27690121

RESUMEN

Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other ß-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP), in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.

8.
Antimicrob Agents Chemother ; 59(1): 609-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385114

RESUMEN

The human pathogen Streptococcus pneumoniae has been treated for decades with ß-lactam antibiotics. Its resistance is now widespread, mediated by the expression of mosaic variants of the target enzymes, the penicillin-binding proteins (PBPs). Understanding the mode of action of ß-lactams, not only in molecular detail but also in their physiological consequences, will be crucial to improving these drugs and any counterresistances. In this work, we investigate the piperacillin paradox, by which this ß-lactam selects primarily variants of PBP2b, whereas its most reactive target is PBP2x. These PBPs are both essential monofunctional transpeptidases involved in peptidoglycan assembly. PBP2x participates in septal synthesis, while PBP2b functions in peripheral elongation. The formation of the "lemon"-shaped cells induced by piperacillin treatment is consistent with the inhibition of PBP2x. Following the examination of treated and untreated cells by electron microscopy, the localization of the PBPs by epifluorescence microscopy, and the determination of the inhibition time course of the different PBPs, we propose a model of peptidoglycan assembly that accounts for the piperacillin paradox.


Asunto(s)
Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Piperacilina/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Resistencia betalactámica , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Pruebas de Sensibilidad Microbiana , Terapia Molecular Dirigida , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/fisiología , Resistencia betalactámica/efectos de los fármacos
9.
10.
PLoS One ; 8(9): e75522, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147156

RESUMEN

The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , Pared Celular/metabolismo , Proteínas de la Membrana/metabolismo , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Hidrólisis , Cinética , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/genética
11.
ACS Chem Biol ; 8(12): 2688-96, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24044435

RESUMEN

Understanding the molecular basis of bacterial cell wall assembly is of paramount importance in addressing the threat of increasing antibiotic resistance worldwide. Streptococcus pneumoniae presents a particularly acute problem in this respect, as it is capable of rapid evolution by homologous recombination with related species. Resistant strains selected by treatment with ß-lactams express variants of the target enzymes that do not recognize the drugs but retain their activity in cell wall building, despite the antibiotics being mimics of the natural substrate. Until now, the crucial transpeptidase activity that is inhibited by ß-lactams was not amenable to in vitro investigation with enzymes from Gram-positive organisms, including streptococci, staphylococci, or enterococci pathogens. We report here for the first time the in vitro assembly of peptidoglycan using recombinant penicillin-binding proteins from pneumococcus and the precursor lipid II. The two required enzymatic activities, glycosyl transferase for elongating glycan chains and transpeptidase for cross-linking stem-peptides, were observed. Most importantly, the transpeptidase activity was dependent on the chemical nature of the stem-peptide. Amidation of the second residue glutamate into iso-glutamine by the recently discovered amido-transferase MurT/GatD is required for efficient cross-linking of the peptidoglycan.


Asunto(s)
Pared Celular/enzimología , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , Peptidil Transferasas/metabolismo , Streptococcus pneumoniae/enzimología , Antibacterianos/farmacología , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/genética , Ingeniería Genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Recombinación Homóloga , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/genética , Peptidil Transferasas/química , Peptidil Transferasas/genética , Streptococcus pneumoniae/química , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/genética , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/química , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Resistencia betalactámica/efectos de los fármacos , Resistencia betalactámica/genética , beta-Lactamas/farmacología
12.
Antimicrob Agents Chemother ; 57(1): 661-3, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23147739

RESUMEN

Although the rate of acylation of a penicillin-resistant form of Streptococcus pneumoniae penicillin-binding protein 2x (PBP2x) by ceftaroline is 80-fold lower than that of its penicillin-sensitive counterpart, it remains sufficiently high (k(2)/K = 12,600 M(-1) s(-1)) to explain the sensitivity of the penicillin-resistant strain to this new cephalosporin. Surprisingly, the Actinomadura R39 DD-peptidase is not very sensitive to ceftaroline.


Asunto(s)
Actinomycetales/efectos de los fármacos , Antibacterianos/farmacología , Cefalosporinas/farmacología , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , Actinomycetales/enzimología , Actinomycetales/crecimiento & desarrollo , Acilación/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/antagonistas & inhibidores , Especificidad de la Especie , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/metabolismo , Ceftarolina
13.
Mol Microbiol ; 85(1): 179-94, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22606933

RESUMEN

Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , Pared Celular/metabolismo , Escherichia coli/enzimología
14.
FEBS J ; 279(11): 2071-81, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22487093

RESUMEN

The pneumococcus is an important Gram-positive pathogen, which shows increasing resistance to antibiotics, including ß-lactams that target peptidoglycan assembly. Understanding cell-wall synthesis, at the molecular and cellular level, is essential for the prospect of combating drug resistance. As a first step towards reconstituting pneumococcal cell-wall assembly in vitro, we present the characterization of the glycosyltransferase activity of penicillin-binding protein (PBP)2a from Streptococcus pneumoniae. Recombinant full-length membrane-anchored PBP2a was purified by ion-exchange chromatography. The glycosyltransferase activity of this enzyme was found to differ from that of a truncated periplasmic form. The full-length protein with its cytoplasmic and transmembrane segment synthesizes longer glycan chains than the shorter form. The transpeptidase active site was functional, as shown by its reactivity towards bocillin and the catalysis of the hydrolysis of a thiol-ester substrate analogue. However, PBP2a did not cross-link the peptide stems of glycan chains in vitro. The absence of transpeptidase activity indicates that an essential component is missing from the in vitro system.


Asunto(s)
Pared Celular/enzimología , Proteínas de Unión a las Penicilinas/metabolismo , Péptido Sintasas/metabolismo , Streptococcus pneumoniae/enzimología , Dominio Catalítico , Pared Celular/genética , Cromatografía por Intercambio Iónico , Farmacorresistencia Bacteriana/genética , Escherichia coli , Glicoproteínas/biosíntesis , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/aislamiento & purificación , Péptido Sintasas/genética , Péptido Sintasas/aislamiento & purificación , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/química
15.
Microb Drug Resist ; 18(3): 256-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22432702

RESUMEN

To make progress in understanding peptidoglycan metabolism, we will reconstitute in vitro the assembly process and the molecular machineries that carry out this formidable task. We review here the reports of isolation of complexes comprising penicillin-binding proteins (PBPs), the enzymes that synthesize the peptidoglycan from its lipid-linked precursor.


Asunto(s)
Pared Celular/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/biosíntesis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Pared Celular/química , Pared Celular/genética , Cromatografía de Afinidad , Escherichia coli/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Inmunoprecipitación , Muramoilpentapéptido Carboxipeptidasa/genética , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Coloración y Etiquetado
16.
EMBO J ; 30(8): 1425-32, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21386816

RESUMEN

Bacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane-anchored cell wall precursor, Lipid II. After synthesis this lipid intermediate is translocated across the cell membrane. The translocation (flipping) step of Lipid II was demonstrated to require a specific protein (flippase). Here, we show that the integral membrane protein FtsW, an essential protein of the bacterial division machinery, is a transporter of the lipid-linked peptidoglycan precursors across the cytoplasmic membrane. Using Escherichia coli membrane vesicles we found that transport of Lipid II requires the presence of FtsW, and purified FtsW induced the transbilayer movement of Lipid II in model membranes. This study provides the first biochemical evidence for the involvement of an essential protein in the transport of lipid-linked cell wall precursors across biogenic membranes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Peptidoglicano/metabolismo , Transporte Biológico , Proteínas Recombinantes/metabolismo
17.
FEBS J ; 277(20): 4290-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20849416

RESUMEN

Cell wall biosynthesis is a key target for antibacterial drugs. The major constituent of the bacterial wall, peptidoglycan, is a netlike polymer responsible for the size and shape of the cell and for resisting osmotic pressure. It consists of glycan chains of repeating disaccharide units cross-linked through short peptide chains. Peptidoglycan assembly is catalyzed by the periplasmic domain of bifunctional class A penicillin-binding proteins. Cross-linking of the peptide chains is catalyzed by their transpeptidase module, which can be inhibited by the most widely used antibiotics, the ß-lactams. In contrast, no drug in clinical use inhibits the polymerization of the glycan chains, catalyzed by their glycosyltransferase module, although it is an obvious target. We report here the purification of the ectodomain of the class A penicillin-binding protein 1a from Thermotoga maritima (Tm-1a*), expressed recombinantly in Escherichia coli. A detergent screen showed that detergents with shorter aliphatic chains were better solubilizers. Cyclohexyl-hexyl-ß-D-maltoside-purified Tm-1a* was found to be monomeric and to have improved thermal stability. A miniaturized, multiwell continuous fluorescence assay of the glycosyltransferase activity was used to screen for optimal reaction conditions. Tm-1a* was active as a glycosyltransferase, catalyzing the formation of glycan chains up to 16 disaccharide units long. Our results emphasize the importance of the detergent in preparing a stable monomeric ectodomain of a class A penicillin-binding protein. Our assay could be used to screen collections of compounds for inhibitors of peptidoglycan glycosyltransferases that could serve as the basis for the development of novel antibiotics.


Asunto(s)
Pruebas de Enzimas/métodos , Glicosiltransferasas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Thermotoga maritima/enzimología , Clonación Molecular/métodos , Detergentes , Sistemas de Liberación de Medicamentos , Proteínas de Unión a las Penicilinas/análisis , Proteínas de Unión a las Penicilinas/aislamiento & purificación , Solubilidad
18.
J Biol Chem ; 284(40): 27687-700, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19635793

RESUMEN

DivIB(FtsQ), FtsL, and DivIC(FtsB) are enigmatic membrane proteins that are central to the process of bacterial cell division. DivIB(FtsQ) is dispensable in specific conditions in some species, and appears to be absent in other bacterial species. The presence of FtsL and DivIC(FtsB) appears to be conserved despite very low sequence conservation. The three proteins form a complex at the division site, FtsL and DivIC(FtsB) being associated through their extracellular coiled-coil region. We report here structural investigations by NMR, small-angle neutron and x-ray scattering, and interaction studies by surface plasmon resonance, of the complex of DivIB, FtsL, and DivIC from Streptococcus pneumoniae, using soluble truncated forms of the proteins. We found that one side of the "bean"-shaped central beta-domain of DivIB interacts with the C-terminal regions of the dimer of FtsL and DivIC. This finding is corroborated by sequence comparisons across bacterial genomes. Indeed, DivIB is absent from species with shorter FtsL and DivIC proteins that have an extracellular domain consisting only of the coiled-coil segment without C-terminal conserved regions (Campylobacterales). We propose that the main role of the interaction of DivIB with FtsL and DivIC is to help the formation, or to stabilize, the coiled-coil of the latter proteins. The coiled-coil of FtsL and DivIC, itself or with transmembrane regions, could be free to interact with other partners.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espacio Extracelular/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Difracción de Neutrones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Solubilidad , Streptococcus pneumoniae/citología , Streptococcus pneumoniae/metabolismo , Resonancia por Plasmón de Superficie , Difracción de Rayos X
19.
J Bacteriol ; 190(13): 4501-11, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18441058

RESUMEN

DivIB, also known as FtsQ in gram-negative organisms, is a division protein that is conserved in most eubacteria. DivIB is localized at the division site and forms a complex with two other division proteins, FtsL and DivIC/FtsB. The precise function of these three bitopic membrane proteins, which are central to the division process, remains unknown. We report here the characterization of a divIB deletion mutant of Streptococcus pneumoniae, which is a coccus that divides with parallel planes. Unlike its homologue FtsQ in Escherichia coli, pneumococcal DivIB is not required for growth in rich medium, but the Delta divIB mutant forms chains of diplococci and a small fraction of enlarged cells with defective septa. However, the deletion mutant does not grow in a chemically defined medium. In the absence of DivIB and protein synthesis, the partner FtsL is rapidly degraded, whereas other division proteins are not affected, pointing to a role of DivIB in stabilizing FtsL. This is further supported by the finding that an additional copy of ftsL restores growth of the Delta divIB mutant in defined medium. Functional mapping of the three distinct alpha, beta, and gamma domains of the extracellular region of DivIB revealed that a complete beta domain is required to fully rescue the deletion mutant. DivIB with a truncated beta domain reverts only the chaining phenotype, indicating that DivIB has distinct roles early and late in the division process. Most importantly, the deletion of divIB increases the susceptibility to beta-lactams, more evidently in a resistant strain, suggesting a function in cell wall synthesis.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Proteínas de la Membrana/genética , Streptococcus pneumoniae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Cefotaxima/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , División Celular/efectos de los fármacos , División Celular/genética , División Celular/fisiología , Mutación INDEL , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía de Contraste de Fase , Modelos Genéticos , Datos de Secuencia Molecular , Penicilina G/farmacología , Unión Proteica , Homología de Secuencia de Aminoácido , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/ultraestructura , Resistencia betalactámica/genética
20.
FEMS Microbiol Rev ; 32(2): 345-60, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18266741

RESUMEN

The shape of bacteria is determined by their cell wall and can be very diverse. Even among genera with the suffix 'cocci', which are the focus of this review, different shapes exist. While staphylococci or Neisseria cells, for example, are truly round-shaped, streptococci, lactococci or enterococci have an ovoid shape. Interestingly, there seems to be a correlation between the shape of an organism and its set of penicillin-binding proteins--the enzymes that assemble the peptidoglycan, the main constituent of the cell wall. While only one peptidoglycan biosynthesis machinery seems to exist in staphylococci, two of these machineries are proposed to function in ovoid-shaped bacteria, reinforcing the intrinsic differences regarding the morphogenesis of different classes of cocci. The present review aims to integrate older ultra-structural data with recent localization studies, in order to clarify the relation between the mechanisms of cell wall synthesis and the determination of cell shape in various cocci.


Asunto(s)
División Celular , Pared Celular/metabolismo , Cocos Grampositivos/citología , Morfogénesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Cocos Grampositivos/metabolismo , Proteínas de Unión a las Penicilinas/análisis , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA