Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biophotonics ; 17(7): e202300475, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866730

RESUMEN

The study encompasses an investigation of optical, photothermal and biocompatibility properties of a composite consisting of golden cores surrounded by superparamagnetic CoFe2O4 nanoparticles. Accompanied with the experiment, the computational modeling reveals that each adjusted magnetic nanoparticle redshifts the plasmon resonance frequency in gold and nonlinearly increases the extinction cross-section at ~800 nm. The concentration dependent photothermal study demonstrates a temperature increase of 8.2 K and the photothermal conversion efficiency of 51% for the 100 µg/mL aqueous solution of the composite nanoparticles, when subjected to a laser power of 0.5 W at 815 nm. During an in vitro photothermal therapy, a portion of the composite nanoparticles, initially seeded at this concentration, remained associated with the cells after washing. These retained nanoparticles effectively heated the cell culture medium, resulting in a 22% reduction in cell viability after 15 min of the treatment. The composite features a potential in multimodal magneto-plasmonic therapies.


Asunto(s)
Cobalto , Compuestos Férricos , Oro , Nanocompuestos , Terapia Fototérmica , Nanocompuestos/química , Cobalto/química , Cobalto/farmacología , Oro/química , Oro/farmacología , Compuestos Férricos/química , Humanos , Supervivencia Celular/efectos de los fármacos , Temperatura
2.
Phys Chem Chem Phys ; 25(45): 30903-30913, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955312

RESUMEN

Electromagnetic theory predicts that the optimal value of the localized plasmon resonance (LPR) wavelength for the maximal SERS enhancement factor (EF) is half the sum of the laser and Raman wavelengths. For small Raman shifts, the theoretical EF scales as the fourth power of the local field. However, experimental data often disagree with these theoretical conclusions, leaving the question of choosing the optimal plasmon resonance for the maximal SERS signal unresolved. Here, we present experimental data for gold nanorods (AuNRs), gold nanotriangles (AuNTs), and gold nanostars (AuNSTs) simulating 1D, 2D, and 3D plasmonic nanostructures, respectively. The LPR wavelengths were tuned by chemical etching within 580-1020 nm at a constant concentration of the particles. The particles were functionalized with Cy7.5 and NBT, and the dependence of the intensity at 940 cm-1 (Cy7.5) and 1343 cm-1 (NBT) on the LPR wavelength was examined for laser wavelengths of 633 nm and 785 nm. The electromagnetic SERS EFs were calculated by averaging the product of the local field intensities at the laser and Raman wavelengths over the particle surface and their random orientations. The calculated SERS plasmonic profiles were redshifted compared to the laser wavelength. For 785 nm excitation, the calculated EFs were five to seven times higher than those for 633 nm excitation. With AuNR@Cy7.5 and AuNT@ Cy7.5, the experimental SERS was 35-fold stronger than it was with NBT-functionalized particles, but with AuNST@Cy7.5 and AuNST@NBT, the SERS responses were similar. With all nanoparticles tested, the SERS plasmonic profiles after 785 nm excitation were slightly blue-shifted, as compared with the laser wavelength, possibly owing to the inner filter effect. After 633 nm excitation, the SERS profiles were red-shifted, in agreement with EM theory. In all cases, the plasmonic EF profiles were much broadened compared to the calculated ones and did not follow the four-power law.

3.
Sensors (Basel) ; 22(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35684746

RESUMEN

The main goal of this work was to modify the previously developed blade-type planar structure using plasmonic gold nanostars in order to stimulate photofield emission and provide efficient laser control of the electron current. Localization and enhancement of the field at the tips of gold nanostars provided a significant increase in the tunneling electron current in the experimental sample (both electrical field and photofield emission). Irradiation at a wavelength in the vicinity of the plasmon resonance (red laser) provided a gain in the photoresponse value of up to 5 times compared to irradiation far from the resonance (green laser). The prospects for transition to regimes of structure irradiation by femtosecond laser pulses at the wavelength of surface plasmon resonance, which lead to an increase in the local optical field, are discussed. The kinetics of the energy density of photoinduced hot and thermalized electrons is estimated. The proposed laser-controlled matrix current source is promising for use in X-ray computed tomography systems.


Asunto(s)
Oro , Nanopartículas del Metal , Electrones , Oro/química , Rayos Láser , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodos
4.
Nanoscale ; 13(17): 8343, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33885126

RESUMEN

Correction for 'A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification' by Nikolai G. Khlebtsov et al., Nanoscale, 2020, 12, 19963-19981, DOI: 10.1039/D0NR02531C.

5.
Sensors (Basel) ; 21(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578701

RESUMEN

An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated. The advantages of the proposed material and the prospects for using X-ray computed tomography in the matrix source are evaluated.

6.
Nanoscale ; 12(38): 19963-19981, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32996517

RESUMEN

Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV-vis-NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV-vis-NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis-NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA