Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1641, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409221

RESUMEN

The ever-growing demand for device miniaturization and energy efficiency in data storage and computing technology has prompted a shift towards antiferromagnetic topological spin textures as information carriers. This shift is primarily owing to their negligible stray fields, leading to higher possible device density and potentially ultrafast dynamics. We realize in this work such chiral in-plane topological antiferromagnetic spin textures namely merons, antimerons, and bimerons in synthetic antiferromagnets by concurrently engineering the effective perpendicular magnetic anisotropy, the interlayer exchange coupling, and the magnetic compensation ratio. We demonstrate multimodal vector imaging of the three-dimensional Néel order parameter, revealing the topology of those spin textures and a globally well-defined chirality, which is a crucial requirement for controlled current-induced dynamics. Our analysis reveals that the interplay between interlayer exchange and interlayer magnetic dipolar interactions plays a key role to significantly reduce the critical strength of the Dzyaloshinskii-Moriya interaction required to stabilize topological spin textures, such as antiferromagnetic merons, in synthetic antiferromagnets, making them a promising platform for next-generation spintronics applications.

2.
J Chem Theory Comput ; 15(7): 3941-3948, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31185169

RESUMEN

Accurate methods to estimate free energies play an important role for studying diverse condensed-phase problems in chemistry and biochemistry. The most common methods used in conjunction with molecular dynamics (MD) and Monte Carlo statistical mechanics (MC) simulations are free energy perturbation (FEP) and thermodynamic integration (TI). For common applications featuring the conversion of one molecule to another, simulations are run in stages or multiple "λ-windows" to promote convergence of the results. For computation of absolute free energies of solvation or binding, calculations are needed in which the solute is typically annihilated in the solvent and in the complex. The present work addresses identification of optimal protocols for such calculations, specifically, the creation/annihilation of organic molecules in aqueous solution. As is common practice, decoupling of the perturbations for electrostatic and Lennard-Jones interactions was performed. Consistent with earlier reports, FEP calculations for molecular creations are much more efficient, while annihilations require many more windows and may converge to incorrect values. Strikingly, we find that as few as four windows may be adequate for creation calculations for solutes ranging from argon to ethylbenzene. For a larger druglike molecule, MIF180, which contains 22 non-hydrogen atoms and three rotatable bonds, 10 creation windows are found to be adequate to yield the correct free energy of hydration. Convergence is impeded with procedures that use any sampling in the annihilation direction, and there is no need for postprocessing methods such as the Bennett acceptance ratio (BAR).

3.
Phys Rev Lett ; 118(2): 026801, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28128602

RESUMEN

We analyze the electron dynamics in corrugated layers of transition-metal dichalcogenides. Due to the strong spin-orbit coupling, the intrinsic (Gaussian) curvature leads to an emergent gauge field associated with the Berry connection of the spinor wave function. We discuss the gauge field created by topological defects of the lattice, namely, tetragonal and octogonal disclinations and edge dislocations. Ripples and topological disorder induce the same dephasing effects as a random magnetic field, suppressing the weak localization effects. This geometric magnetic field can be detected in an Aharonov-Bohm interferometry experiment by measuring the local density of states in the vicinity of corrugations.

4.
Phys Rev Lett ; 117(22): 227201, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27925722

RESUMEN

We study a spin Hamiltonian for spin-orbit-coupled ferromagnets on the honeycomb lattice. At sufficiently low temperatures supporting the ordered phase, the effective Hamiltonian for magnons, the quanta of spin-wave excitations, is shown to be equivalent to the Haldane model for electrons, which indicates the nontrivial topology of the band and the existence of the associated edge state. At high temperatures comparable to the ferromagnetic-exchange strength, we take the Schwinger-boson representation of spins, in which the mean-field spinon band forms a bosonic counterpart of the Kane-Mele model. The nontrivial geometry of the spinon band can be inferred by detecting the spin Nernst effect. A feasible experimental realization of the spin Hamiltonian is proposed.

5.
J Am Chem Soc ; 138(29): 9065-8, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27383903

RESUMEN

We report the discovery of a less symmetric crystalline phase of Mn12 acetate, a triclinic phase, resulting from recrystallizing the original tetragonal phase reported by Lis in acetonitrile and toluene. This new phase exhibits the same structure of Mn12 acetate clusters and the same positions of tunneling resonances on the magnetic field as the conventional tetragonal phase. However, the width of the zero-field resonance is at least 1 order of magnitude smaller-can be as low as 50 Oe-indicating very small inhomogeneous broadening due to dipolar and nuclear fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...