Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Transl Res ; 256: 56-72, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36640905

RESUMEN

Cushing's disease (CD) is a serious endocrine disorder attributed to an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that that subsequently leads to chronic hypercortisolemia. PitNET regression has been reported following treatment with the investigational selective glucocorticoid receptor (GR) modulator relacorilant, but the mechanisms behind that effect remain unknown. Human PitNET organoid models were generated from induced human pluripotent stem cells (iPSCs) or fresh tissue obtained from CD patient PitNETs (hPITOs). Genetically engineered iPSC derived organoids were used to model the development of corticotroph PitNETs expressing USP48 (iPSCUSP48) or USP8 (iPSCUSP8) somatic mutations. Organoids were treated with the GR antagonist mifepristone or the GR modulator relacorilant with or without somatostatin receptor (SSTR) agonists pasireotide or octreotide. In iPSCUSP48 and iPSCUSP8 cultures, mifepristone induced a predominant expression of SSTR2 with a concomitant increase in ACTH secretion and tumor cell proliferation. Relacorilant predominantly induced SSTR5 expression and tumor cell apoptosis with minimal ACTH induction. Hedgehog signaling mediated the induction of SSTR2 and SSTR5 in response to mifepristone and relacorilant. Relacorilant sensitized PitNET organoid responsiveness to pasireotide. Therefore, our study identified the potential therapeutic use of relacorilant in combination with somatostatin analogs and demonstrated the advantages of relacorilant over mifepristone, supporting its further development for use in the treatment of Cushing's disease patients.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Corticotrofos/metabolismo , Corticotrofos/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapéutico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/patología , Mifepristona/farmacología , Mifepristona/metabolismo , Mifepristona/uso terapéutico , Proteínas Hedgehog , Neoplasias Hipofisarias/tratamiento farmacológico , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/metabolismo , Hormona Adrenocorticotrópica/uso terapéutico
3.
Cells ; 11(21)2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36359740

RESUMEN

(1) Background: Cushing's disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that stimulates the adrenal glands to overproduce cortisol. Chronic exposure to excess cortisol has detrimental effects on health, including increased stroke rates, diabetes, obesity, cognitive impairment, anxiety, depression, and death. The first-line treatment for CD is pituitary surgery. Current surgical remission rates reported in only 56% of patients depending on several criteria. The lack of specificity, poor tolerability, and low efficacy of the subsequent second-line medical therapies make CD a medical therapeutic challenge. One major limitation that hinders the development of specific medical therapies is the lack of relevant human model systems that recapitulate the cellular composition of PitNET microenvironment. (2) Methods: human pituitary tumor tissue was harvested during transsphenoidal surgery from CD patients to generate organoids (hPITOs). (3) Results: hPITOs generated from corticotroph, lactotroph, gonadotroph, and somatotroph tumors exhibited morphological diversity among the organoid lines between individual patients and amongst subtypes. The similarity in cell lineages between the organoid line and the patient's tumor was validated by comparing the neuropathology report to the expression pattern of PitNET specific markers, using spectral flow cytometry and exome sequencing. A high-throughput drug screen demonstrated patient-specific drug responses of hPITOs amongst each tumor subtype. Generation of induced pluripotent stem cells (iPSCs) from a CD patient carrying germline mutation CDH23 exhibited dysregulated cell lineage commitment. (4) Conclusions: The human pituitary neuroendocrine tumor organoids represent a novel approach in how we model complex pathologies in CD patients, which will enable effective personalized medicine for these patients.


Asunto(s)
Tumores Neuroendocrinos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/cirugía , Organoides , Tumores Neuroendocrinos/tratamiento farmacológico , Hidrocortisona , Microambiente Tumoral
4.
Elife ; 112022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094159

RESUMEN

The establishment and maintenance of different cellular compartments in tissues is a universal requirement across all metazoans. Maintaining the correct ratio of cell types in time and space allows tissues to form patterned compartments and perform complex functions. Patterning is especially evident in the human colon, where tissue homeostasis is maintained by stem cells in crypt structures that balance proliferation and differentiation. Here, we developed a human 2D patient derived organoid screening platform to study tissue patterning and kinase pathway dynamics in single cells. Using this system, we discovered that waves of ERK signaling induced by apoptotic cells play a critical role in maintaining tissue patterning and homeostasis. If ERK is activated acutely across all cells instead of in wave-like patterns, then tissue patterning and stem cells are lost. Conversely, if ERK activity is inhibited, then stem cells become unrestricted and expand dramatically. This work demonstrates that the colonic epithelium requires coordinated ERK signaling dynamics to maintain patterning and tissue homeostasis. Our work reveals how ERK can antagonize stem cells while supporting cell replacement and the function of the gut.


Asunto(s)
Colon , Células Madre , Proliferación Celular , Homeostasis , Humanos , Mucosa Intestinal/metabolismo
5.
Gastroenterology ; 163(2): 411-425.e4, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35487288

RESUMEN

BACKGROUND & AIMS: A subset of myeloid-derived suppressor cells (MDSCs) that express murine Schlafen4 (SLFN4) or its human ortholog SLFN12L polarize in the Helicobacter-inflamed stomach coincident with intestinal or spasmolytic polypeptide-expressing metaplasia. We propose that individuals with a more robust response to damage-activated molecular patterns and increased Toll-like receptor 9 (TLR9) expression are predisposed to the neoplastic complications of Helicobacter infection. METHODS: A mouse or human Transwell co-culture system composed of dendritic cells (DCs), 2-dimensional gastric epithelial monolayers, and Helicobacter were used to dissect the cellular source of interferon-α (IFNα) in the stomach by flow cytometry. Conditioned media from the co-cultures polarized primary myeloid cells. MDSC activity was determined by T-cell suppression assays. In human subjects with intestinal metaplasia or gastric cancer, the rs5743836 TLR9T>C variant was genotyped and linked to TLR9, IFNα, and SLFN12L expression by immunohistochemistry. Nuclear factor-κB binding to the TLR9 C allele was determined by electrophoretic mobility shift assays. RESULTS: Helicobacter infection induced gastric epithelial and plasmacytoid DC expression of TLR9 and IFNα. Co-culturing primary mouse or human cells with DCs and Helicobacter induced TLR9, IFNα secretion, and SLFN+-MDSC polarization. Neutralizing IFNα in vivo mitigated Helicobacter-induced spasmolytic polypeptide-expressing metaplasia. The TLR9 minor C allele creates a nuclear factor-κB binding site associated with higher levels of TLR9, IFNα, and SLFN12L in Helicobacter-infected stomachs that correlated with a greater incidence of metaplasias and cancer. CONCLUSIONS: TLR9 plays an essential role in the production of IFNα and polarization of SLFN+ MDSCs on Helicobacter infection. Subjects carrying the rs5743836 TLR9 minor C allele are predisposed to neoplastic complications if chronically infected.


Asunto(s)
Infecciones por Helicobacter , Células Supresoras de Origen Mieloide , Neoplasias Gástricas , Receptor Toll-Like 9 , Animales , Helicobacter , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Humanos , Interferón-alfa , Metaplasia , Ratones , FN-kappa B/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiología , Receptor Toll-Like 4 , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
6.
Nat Rev Gastroenterol Hepatol ; 19(7): 451-467, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35288702

RESUMEN

Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.


Asunto(s)
Adenocarcinoma , Infecciones por Virus de Epstein-Barr , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Adenocarcinoma/complicaciones , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Herpesvirus Humano 4 , Humanos , Inflamación/complicaciones , Neoplasias Gástricas/etiología , Neoplasias Gástricas/metabolismo , Microambiente Tumoral
7.
NPJ Regen Med ; 7(1): 3, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022438

RESUMEN

Sonic Hedgehog (Shh), secreted from gastric parietal cells, contributes to the regeneration of the epithelium. The recruitment of macrophages plays a central role in the regenerative process. The mechanism that regulates macrophage recruitment in response to gastric injury is largely unknown. Here we tested the hypothesis that Shh stimulates macrophage chemotaxis to the injured epithelium and contributes to gastric regeneration. A mouse model expressing a myeloid cell-specific deletion of Smoothened (LysMcre/+;Smof/f) was generated using transgenic mice bearing loxP sites flanking the Smo gene (Smo loxP) and mice expressing a Cre recombinase transgene from the Lysozyme M locus (LysMCre). Acetic acid injury was induced in the stomachs of both control and LysMcre/+;Smof/f (SmoKO) mice and gastric epithelial regeneration and macrophage recruitment analyzed over a period of 7 days post-injury. Bone marrow-derived macrophages (BM-Mø) were collected from control and SmoKO mice. Human-derived gastric organoid/macrophage co-cultures were established, and macrophage chemotaxis measured. Compared to control mice, SmoKO animals exhibited inhibition of ulcer repair and normal epithelial regeneration, which correlated with decreased macrophage infiltration at the site of injury. Bone marrow chimera experiments using SmoKO donor cells showed that control chimera mice transplanted with SmoKO bone marrow donor cells exhibited a loss of ulcer repair, and transplantation of control bone marrow donor cells to SmoKO mice rescued epithelial cell regeneration. Histamine-stimulated Shh secretion in human organoid/macrophage co-cultures resulted in macrophage migration toward the gastric epithelium, a response that was blocked with Smo inhibitor Vismodegib. Shh-induced macrophage migration was mediated by AKT signaling. In conclusion, Shh signaling acts as a macrophage chemoattractant via a Smo-dependent mechanism during gastric epithelial regeneration in response to injury.

8.
Gut ; 71(8): 1515-1531, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34489308

RESUMEN

OBJECTIVE: The absent in melanoma 2 (AIM2) cytosolic pattern recognition receptor and DNA sensor promotes the pathogenesis of autoimmune and chronic inflammatory diseases via caspase-1-containing inflammasome complexes. However, the role of AIM2 in cancer is ill-defined. DESIGN: The expression of AIM2 and its clinical significance was assessed in human gastric cancer (GC) patient cohorts. Genetic or therapeutic manipulation of AIM2 expression and activity was performed in the genetically engineered gp130 F/F spontaneous GC mouse model, as well as human GC cell line xenografts. The biological role and mechanism of action of AIM2 in gastric tumourigenesis, including its involvement in inflammasome activity and functional interaction with microtubule-associated end-binding protein 1 (EB1), was determined in vitro and in vivo. RESULTS: AIM2 expression is upregulated by interleukin-11 cytokine-mediated activation of the oncogenic latent transcription factor STAT3 in the tumour epithelium of GC mouse models and patients with GC. Genetic and therapeutic targeting of AIM2 in gp130 F/F mice suppressed tumourigenesis. Conversely, AIM2 overexpression augmented the tumour load of human GC cell line xenografts. The protumourigenic function of AIM2 was independent of inflammasome activity and inflammation. Rather, in vivo and in vitro AIM2 physically interacted with EB1 to promote epithelial cell migration and tumourigenesis. Furthermore, upregulated expression of AIM2 and EB1 in the tumour epithelium of patients with GC was independently associated with poor patient survival. CONCLUSION: AIM2 can play a driver role in epithelial carcinogenesis by linking cytokine-STAT3 signalling, innate immunity and epithelial cell migration, independent of inflammasome activation.


Asunto(s)
Melanoma , Neoplasias Gástricas , Animales , Carcinogénesis/genética , Movimiento Celular/genética , Receptor gp130 de Citocinas/metabolismo , ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata/genética , Inflamasomas/genética , Inflamasomas/metabolismo , Ratones , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/patología , Regulación hacia Arriba
9.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34944780

RESUMEN

(1) Background: The expression of programmed death-ligand 1 (PD-L1), which interacts with programmed cell death protein 1 (PD-1) on cytotoxic T lymphocytes (CTLs), enables tumors to escape immunosurveillance. The PD-1/PD-L1 interaction results in the inhibition of CTL proliferation, and effector function, thus promoting tumor cell evasion from immunosurveillance and cancer persistence. Despite 40% of gastric cancer patients exhibiting PD-L1 expression, only a small subset of patients responds to immunotherapy. Human epidermal growth factor receptor2 (HER2) is one of the critical regulators of several solid tumors, including metastatic gastric cancer. Although half of PD-L1-positive gastric tumors co-express HER2, crosstalk between HER2 and PD-1/PD-L1 in gastric cancer remains undetermined. (2) Methods: Human gastric cancer organoids (huTGOs) were generated from biopsied or resected tissues and co-cultured with CTLs and myeloid-derived suppressor cells (MDSCs). Digital Spatial Profiling (DSP) was performed on FFPE tissue microarrays of numerous gastric cancer patients to examine the protein expression of immune markers. (3) Results: Knockdown of HER2 in PD-L1/HER2-positive huTGOs led to a concomitant decrease in PD-L1 expression. Similarly, in huTGOs/immune cell co-cultures, PD-L1 expression decreased in huTGOs and was correlated with an increase in CTL proliferation which enhanced huTGO death. Treatment with Nivolumab exhibited similar effects. However, a combinatorial treatment with Mubritinib and Nivolumab was unable to inhibit HER2 expression in co-cultures containing MDSCs. (4) Conclusions: Our study suggested that co-expression of HER2 and PD-L1 may contribute to tumor cell immune evasion. In addition, autologous organoid/immune cell co-cultures can be exploited to effectively screen responses to a combination of anti-HER2 and immunotherapy to tailor treatment for gastric cancer patients.

10.
Artículo en Inglés | MEDLINE | ID: mdl-34750164

RESUMEN

OBJECTIVE: Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) encompass a diverse group of neoplasms that vary in their secretory products and in their location within the gastrointestinal tract. Their prevalence in the USA is increasing among all adult age groups. AIM: To identify the possible derivation of GEP-NETs using genome-wide analyses to distinguish small intestinal neuroendocrine tumours, specifically duodenal gastrinomas (DGASTs), from pancreatic neuroendocrine tumours. DESIGN: Whole exome sequencing and RNA-sequencing were performed on surgically resected GEP-NETs (discovery cohort). RNA transcript profiles available in the Gene Expression Omnibus were analysed using R integrated software (validation cohort). Digital spatial profiling (DSP) was used to analyse paraffin-embedded GEP-NETs. Human duodenal organoids were treated with 5 or 10 ng/mL of tumor necrosis factor alpha (TNFα) prior to qPCR and western blot analysis of neuroendocrine cell specification genes. RESULTS: Both the discovery and validation cohorts of small intestinal neuroendocrine tumours induced expression of mesenchymal and calcium signalling pathways coincident with a decrease in intestine-specific genes. In particular, calcium-related, smooth muscle and cytoskeletal genes increased in DGASTs, but did not correlate with MEN1 mutation status. Interleukin 17 (IL-17) and tumor necrosis factor alpha (TNFα) signalling pathways were elevated in the DGAST RNA-sequencing. However, DSP analysis confirmed a paucity of immune cells in DGASTs compared with the adjacent tumour-associated Brunner's glands. Immunofluorescent analysis showed production of these proinflammatory cytokines and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) by the tumours and stroma. Human duodenal organoids treated with TNFα induced neuroendocrine tumour genes, SYP, CHGA and NKX6.3. CONCLUSIONS: Stromal-epithelial interactions induce proinflammatory cytokines that promote Brunner's gland reprogramming.


Asunto(s)
Gastrinoma , Neoplasias Intestinales , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Adulto , Calcio , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN , Factor de Necrosis Tumoral alfa/genética
11.
J Vis Exp ; (173)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34309588

RESUMEN

Tumors expressing programmed cell death-ligand 1 (PD-L1) interact with programmed cell death protein 1 (PD-1) on CD8+ cytotoxic T lymphocytes (CTLs) to evade immune surveillance leading to the inhibition of CTL proliferation, survival, and effector function, and subsequently cancer persistence. Approximately 40% of gastric cancers express PD-L1, yet the response rate to immunotherapy is only 30%. We present the use of human-derived autologous gastric cancer organoid/immune cell co-culture as a preclinical model that may predict the efficacy of targeted therapies to improve the outcome of cancer patients. Although cancer organoid co-cultures with immune cells have been reported, this co-culture approach uses tumor antigen to pulse the antigen-presenting dendritic cells. Dendritic cells (DCs) are then cultured with the patient's CD8+ T cells to expand the cytolytic activity and proliferation of these T lymphocytes before co-culture. In addition, the differentiation and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in culture are investigated within this co-culture system. This organoid approach may be of broad interest and appropriate to predict the efficacy of therapy and patient outcome in other cancers, including pancreatic cancer.


Asunto(s)
Neoplasias Gástricas , Antígeno B7-H1 , Técnicas de Cocultivo , Humanos , Organoides , Neoplasias Gástricas/terapia , Linfocitos T Citotóxicos
12.
Cancer Lett ; 518: 59-71, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34126195

RESUMEN

Tumors evade immune surveillance by expressing Programmed Death-Ligand 1 (PD-L1), subsequently inhibiting CD8+ cytotoxic T lymphocyte function. Response of gastric cancer to immunotherapy is relatively low. Our laboratory has reported that Helicobacter pylori-induced PD-L1 expression within the gastric epithelium is mediated by the Hedgehog (Hh) signaling pathway. The PI3K/AKT/mTOR pathway is activated in gastric cancer and may have immunomodulatory potential. We hypothesize that Hh signaling mediates mTOR-induced PD-L1 expression. Patient-derived organoids (PDOs) were generated from gastric biopsies and resected tumor tissues. Autologous organoid/immune cell co-cultures were used to study the immunosuppressive function of MDSCs. NanoString Digital Spatial Profiling (DSP) of immune-related protein markers using FFPE slide-mounted tissues from gastric cancer patients was performed. DSP analysis showed infiltration of immunosuppressive MDSCs expressing Arg1, CD66b, VISTA and IDO1 within cancer tissues. Orthotopic transplantation of patient derived organoids (PDOs) resulted in the engraftment of organoids and the development of histology similar to that observed in the patient's tumor tissue. PDO/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of PMN-MDSCs within these co-cultures sensitized the organoids to anti-PD-1/PD-L1-induced cancer cell death. Rapamycin decreased phosphorylated S6K, Gli2 and PD-L1 expression in PDO/immune cell co-cultures. Transcriptional regulation of PD-L1 by GLI1 and GLI2 was blocked by rapamycin. In conclusion, the PDO/immune cell co-cultures may be used to study immunosuppressive MDSC function within the gastric tumor microenvironment. The mTOR signaling pathway mediates GLI-induced PD-L1 expression in gastric cancer.


Asunto(s)
Antígeno B7-H1/genética , Proteínas Hedgehog/genética , Organoides/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/genética , Transcripción Genética/genética , Proteína con Dedos de Zinc GLI1/genética , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Helicobacter pylori/patogenicidad , Humanos , Inmunoterapia/métodos , Transducción de Señal/genética , Neoplasias Gástricas/microbiología , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral/genética
13.
Cell Rep ; 35(13): 109293, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192535

RESUMEN

While the immediate and transitory response of breast cancer cells to pathological stiffness in their native microenvironment has been well explored, it remains unclear how stiffness-induced phenotypes are maintained over time after cancer cell dissemination in vivo. Here, we show that fibrotic-like matrix stiffness promotes distinct metastatic phenotypes in cancer cells, which are preserved after transition to softer microenvironments, such as bone marrow. Using differential gene expression analysis of stiffness-responsive breast cancer cells, we establish a multigenic score of mechanical conditioning (MeCo) and find that it is associated with bone metastasis in patients with breast cancer. The maintenance of mechanical conditioning is regulated by RUNX2, an osteogenic transcription factor, established driver of bone metastasis, and mitotic bookmarker that preserves chromatin accessibility at target gene loci. Using genetic and functional approaches, we demonstrate that mechanical conditioning maintenance can be simulated, repressed, or extended, with corresponding changes in bone metastatic potential.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Fenómenos Biomecánicos , Médula Ósea/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Mecanotransducción Celular , Invasividad Neoplásica , Microambiente Tumoral
14.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1142-G1150, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33759566

RESUMEN

In recent years, organoids have become a novel in vitro method to study gastrointestinal organ development, physiology, and disease. An organoid, in short, may be defined as a miniaturized organ that can be grown from adult stem cells in vitro and studied at the microscopic level. Organoids have been used in multitudes of different ways to study the physiology of different human diseases including gastrointestinal cancers such as pancreatic cancer. The development of genome editing based on the bacterial defense mechanism clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has emerged as a laboratory tool that provides the opportunity to study the effects of specific genetic changes on organ development, physiology, and disease. The CRISPR/Cas9 approach can be combined with organoid technology including the use of induced pluripotent stem cell (iPSC)-derived and tissue-derived organoids. The goal of this review is to provide highlights on the development of organoid technology, and the use of this culture system to study the pathophysiology of specific mutations in the development of pancreatic and gastric cancers.NEW & NOTEWORTHY The goal of this review is not only to provide highlights on the development of organoid technology but also to subsequently use this information to study the pathophysiology of those specific mutations in the formation of malignant pancreatic and gastric cancer.


Asunto(s)
Células Madre Adultas/citología , Edición Génica , Células Madre Pluripotentes Inducidas/citología , Organoides/citología , Páncreas/citología , Animales , Sistemas CRISPR-Cas , Humanos
15.
Curr Top Microbiol Immunol ; 430: 55-75, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32889597

RESUMEN

One of the major discoveries in stem cell research in the past decade embraces the development of "organs in a dish," also known as "organoids." Organoids are three-dimensional cellular structures derived from primary stem cells of different organ-specific cell types which are capable of self-renewal and maintenance of the parental lineages. Researchers have developed in vitro organoid models to mimic in vivo host-microbial interactions and disease. In this review, we focus on the use of gastrointestinal organoids as models of microbial disease and cancer.


Asunto(s)
Neoplasias , Organoides , Tracto Gastrointestinal , Humanos
16.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33168589

RESUMEN

Helicobacter pylori is a chronic bacterial pathogen that thrives in several regions of the stomach, causing inflammation that can vary by site and result in distinct disease outcomes. Whether the regions differ in terms of host-derived metabolites is not known. We thus characterized the regional variation of the metabolomes of mouse gastric corpus and antrum organoids and tissue. The uninfected secreted organoid metabolites differed between the corpus and antrum in only seven metabolites as follows: lactic acid, malic acid, phosphoethanolamine, alanine, uridine, glycerol, and isoleucine. Several of the secreted chemicals were depleted upon H. pylori infection in both regions, including urea, cholesterol, glutamine, fumaric acid, lactic acid, citric acid, malic acid, and multiple nonessential amino acids. These results suggest a model in which H. pylori preferentially uses carboxylic acids and amino acids in complex environments, and these are found in both the corpus and antrum. When organoid metabolites were compared to mouse tissue, there was little overlap. The tissue corpus and antrum metabolomes were distinct, including antrum-elevated 5-methoxytryptamine, lactic acid, and caprylic acid, and corpus-elevated phospholipid products. The corpus and antrum remained distinct over an 8-month infection time course. The antrum displayed no significant changes between the time points in contrast to the corpus, which exhibited metabolite changes that were consistent with stress, tissue damage, and depletion of key nutrients, such as glutamine and fructose-6-phosphate. Overall, our results suggest that the corpus and antrum have largely but not completely overlapping metabolomes that change moderately upon H. pylori infection.


Asunto(s)
Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Gastritis/microbiología , Helicobacter pylori/aislamiento & purificación , Helicobacter pylori/patogenicidad , Antro Pilórico/metabolismo , Antro Pilórico/microbiología , Animales , Femenino , Gastritis/fisiopatología , Humanos , Metabolómica , Ratones , Ratones Endogámicos C57BL , Modelos Animales
17.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348809

RESUMEN

Purpose: Pancreatic ductal adenocarcinoma (PDAC) has the lowest five-year survival rate of all cancers in the United States. Programmed death 1 receptor (PD-1)-programmed death ligand 1 (PD-L1) immune checkpoint inhibition has been unsuccessful in clinical trials. Myeloid-derived suppressor cells (MDSCs) are known to block anti-tumor CD8+ T cell immune responses in various cancers including pancreas. This has led us to our objective that was to develop a clinically relevant in vitro organoid model to specifically target mechanisms that deplete MDSCs as a therapeutic strategy for PDAC. Method: Murine and human pancreatic ductal adenocarcinoma (PDAC) autologous organoid/immune cell co-cultures were used to test whether PDAC can be effectively treated with combinatorial therapy involving PD-1 inhibition and MDSC depletion. Results: Murine in vivo orthotopic and in vitro organoid/immune cell co-culture models demonstrated that polymorphonuclear (PMN)-MDSCs promoted tumor growth and suppressed cytotoxic T lymphocyte (CTL) proliferation, leading to diminished efficacy of checkpoint inhibition. Mouse- and human-derived organoid/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of arginase 1-expressing PMN-MDSCs within these co-cultures rendered the organoids susceptible to anti-PD-1/PD-L1-induced cancer cell death. Conclusions: Here we use mouse- and human-derived autologous pancreatic cancer organoid/immune cell co-cultures to demonstrate that elevated infiltration of polymorphonuclear (PMN)-MDSCs within the PDAC tumor microenvironment inhibit T cell effector function, regardless of PD-1/PD-L1 inhibition. We present a pre-clinical model that may predict the efficacy of targeted therapies to improve the outcome of patients with this aggressive and otherwise unpredictable malignancy.

18.
Am J Physiol Cell Physiol ; 319(6): C947-C954, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755448

RESUMEN

Spasmolytic polypeptide/trefoil factor 2 (TFF2)-expressing metaplasia (SPEM) is a mucous-secreting reparative lineage that emerges at the ulcer margin in response to gastric injury. Under conditions of chronic inflammation with parietal cell loss, SPEM has been found to emerge and evolve into neoplasia. Cluster-of-differentiation gene 44 (CD44) is known to coordinate normal and metaplastic epithelial cell proliferation. In particular, CD44 variant isoform 9 (CD44v9) associates with the cystine-glutamate transporter xCT, stabilizes the protein, and provides defense against reactive oxygen species (ROS). xCT stabilization by CD44v9 leads to defense against ROS by cystine uptake, glutathione (GSH) synthesis, and maintenance of the redox balance within the intracellular environment. Furthermore, p38 signaling is a known downstream ROS target, leading to diminished cell proliferation and migration, two vital processes of gastric epithelial repair. CD44v9 emerges during repair of the gastric epithelium after injury, where it is coexpressed with other markers of SPEM. The regulatory mechanisms for the emergence of CD44v9 and the role of CD44v9 during the process of gastric epithelial regeneration are largely unknown. Inflammation and M2 macrophage infiltration have recently been demonstrated to play key roles in the induction of SPEM after injury. The following review proposes new insights into the functional role of metaplasia in the process of gastric regeneration in response to ulceration. Our insights are extrapolated from documented studies reporting oxyntic atrophy and SPEM development and our current unpublished findings using the acetic acid-induced gastric injury model.


Asunto(s)
Mucosa Gástrica/patología , Metaplasia/patología , Regeneración/fisiología , Estómago/patología , Estómago/fisiología , Ácido Acético/efectos adversos , Animales , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/fisiología , Humanos , Estómago/efectos de los fármacos
19.
Cell Death Dis ; 11(8): 667, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32820150

RESUMEN

H. pylori infection is one of the leading causes of gastric cancer and the pathogenicity of H. pylori infection is associated with its ability to induce chronic inflammation and apoptosis resistance. While H. pylori infection-induced expression of pro-inflammatory cytokines for chronic inflammation is well studied, the molecular mechanism underlying the apoptosis resistance in infected cells is not well understood. In this study, we demonstrated that H. pylori infection-induced apoptosis resistance in gastric epithelial cells triggered by Raptinal, a drug that directly activates caspase-3. This resistance resulted from the induction of cIAP2 (encoded by BIRC3) since depletion of BIRC3 by siRNA or inhibition of cIAP2 via BV6 reversed H. pylori-suppressed caspase-3 activation. The induction of cIAP2 was regulated by H. pylori-induced BIRC3 eRNA synthesis. Depletion of BIRC3 eRNA decreased H. pylori-induced cIAP2 and reversed H. pylori-suppressed caspase-3 activation. Mechanistically, H. pylori stimulated the recruitment of bromodomain-containing factor Brd4 to the enhancer of BIRC3 and promoted BIRC3 eRNA and mRNA synthesis. Inhibition of Brd4 diminished the expression of BIRC3 eRNA and the anti-apoptotic response to H. pylori infection. Importantly, H. pylori isogenic cagA-deficient mutant failed to activate the synthesis of BIRC3 eRNA and the associated apoptosis resistance. Finally, in primary human gastric epithelial cells, H. pylori also induced resistance to Raptinal-triggered caspase-3 activation by activating the Brd4-dependent BIRC3 eRNA synthesis in a CagA-dependent manner. These results identify a novel function of Brd4 in H. pylori-mediated apoptosis resistance via activating BIRC3 eRNA synthesis, suggesting that Brd4 could be a potential therapeutic target for H. pylori-induced gastric cancer.


Asunto(s)
Apoptosis/fisiología , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Elementos de Facilitación Genéticos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/fisiología , Caspasa 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Epiteliales/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/patogenicidad , Humanos , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estómago/patología , Neoplasias Gástricas/metabolismo , Factores de Transcripción/metabolismo
20.
Methods Cell Biol ; 159: 23-46, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32586445

RESUMEN

While the incidence of gastric cancer in the United States is relatively low due to the diagnosis and treatment of the major risk factor Helicobacter pylori (H. pylori), 5-year patient survival is only approximately 29%. Even after H. pylori infection has been eradicated there is still a risk of developing gastric cancer. Gastric cancer is the final clinical outcome that is often initiated by a sustained inflammatory response and altered epithelial cell differentiation and metaplasia in response to H. pylori infection. Identifying the early epithelial responses to H. pylori infection is important in advancing our understanding of the events that shape a conducive environment for the progression of gastric cancer. Thus, we developed a human gastric tissue-derived organoid-based approach to identify the initiating molecular events that trigger gastric cancer development in response to bacterial infection.


Asunto(s)
Helicobacter pylori/fisiología , Organoides/fisiología , Estómago/fisiología , Técnicas de Cultivo de Tejidos/métodos , Animales , Técnicas de Cocultivo , Humanos , Microinyecciones , Organoides/citología , Células Madre Pluripotentes/citología , Ratas , Linfocitos T Citotóxicos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...