Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
FEBS J ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38588274

Coenzyme F430 is a nickel-containing tetrapyrrole, serving as the prosthetic group of methyl-coenzyme M reductase in methanogenic and methanotrophic archaea. During coenzyme F430 biosynthesis, the tetrapyrrole macrocycle is reduced by the nitrogenase-like CfbC/D system consisting of the reductase component CfbC and the catalytic component CfbD. Both components are homodimeric proteins, each carrying a [4Fe-4S] cluster. Here, the ligands of the [4Fe-4S] clusters of CfbC2 and CfbD2 were identified revealing an all cysteine ligation of both clusters. Moreover, the midpoint potentials of the [4Fe-4S] clusters were determined to be -256 mV for CfbC2 and -407 mV for CfbD2. These midpoint potentials indicate that the consecutive thermodynamically unfavorable 6 individual "up-hill" electron transfers to the organic moiety of the Ni2+-sirohydrochlorin a,c-diamide substrate require an intricate interplay of ATP-binding, hydrolysis, protein complex formation and release to drive product formation, which is a common theme in nitrogenase-like systems.

2.
Chem Sci ; 14(40): 11105-11120, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37860641

The membrane-bound [NiFe]-hydrogenase of Cupriavidus necator is a rare example of a truly O2-tolerant hydrogenase. It catalyzes the oxidation of H2 into 2e- and 2H+ in the presence of high O2 concentrations. This characteristic trait is intimately linked to the unique Cys6[4Fe-3S] cluster located in the proximal position to the catalytic center and coordinated by six cysteine residues. Two of these cysteines play an essential role in redox-dependent cluster plasticity, which bestows the cofactor with the capacity to mediate two redox transitions at physiological potentials. Here, we investigated the individual roles of the two additional cysteines by replacing them individually as well as simultaneously with glycine. The crystal structures of the corresponding MBH variants revealed the presence of Cys5[4Fe-4S] or Cys4[4Fe-4S] clusters of different architecture. The protein X-ray crystallography results were correlated with accompanying biochemical, spectroscopic and electrochemical data. The exchanges resulted in a diminished O2 tolerance of all MBH variants, which was attributed to the fact that the modified proximal clusters mediated only one redox transition. The previously proposed O2 protection mechanism that detoxifies O2 to H2O using four protons and four electrons supplied by the cofactor infrastructure, is extended by our results, which suggest efficient shutdown of enzyme function by formation of a hydroxy ligand in the active site that protects the enzyme from O2 binding under electron-deficient conditions.

3.
Article En | MEDLINE | ID: mdl-37884758

Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.

4.
ACS Nano ; 17(14): 14043-14052, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37395671

The production of renewable feedstocks through the coupled oxygen evolution reaction (OER) with selective organic oxidation requires a perfect balance in the choice of a catalyst and its synthesis access, morphology, and catalytic activity. Herein we report a rapid in-liquid plasma approach to produce a hierarchical amorphous birnessite-type manganese oxide layer on 3D nickel foam. The as-prepared anode exhibits an OER activity with overpotentials of 220, 250, and 270 mV for 100, 500, and 1000 mA·cm-2, respectively, and can spontaneously be paired with chemoselective dehydrogenation of benzylamine under both ambient and industrial (6 M KOH, 65 °C) alkaline conditions. The in-depth ex-situ and in-situ characterization unequivocally demonstrate the intercalation of potassium in the birnessite-type phase with prevalent MnIII states as an active structure, which displays a trade-off between porous morphology and bulk volume catalytic activity. Further, a structure-activity relationship is realized based on the cation size and structurally similar manganese oxide polymorphs. The presented method is a substantial step forward in developing a robust MnOx catalyst for combining effective industrial OER and value-added organic oxidation.

5.
J Am Chem Soc ; 145(25): 13674-13685, 2023 06 28.
Article En | MEDLINE | ID: mdl-37328284

[NiFe]-hydrogenases catalyze the reversible cleavage of H2 into two protons and two electrons at the inorganic heterobimetallic NiFe center of the enzyme. Their catalytic cycle involves at least four intermediates, some of which are still under debate. While the core reaction, including H2/H- binding, takes place at the inorganic cofactor, a major challenge lies in identifying those amino acid residues that contribute to the reactivity and how they stabilize (short-lived) intermediate states. Using cryogenic infrared and electron paramagnetic resonance spectroscopy on the regulatory [NiFe]-hydrogenase from Cupriavidus necator, a model enzyme for the analysis of catalytic intermediates, we deciphered the structural basis of the hitherto elusive Nia-L intermediates. We unveiled the protonation states of a proton-accepting glutamate and a Ni-bound cysteine residue in the Nia-L1, Nia-L2, and the hydride-binding Nia-C intermediates as well as previously unknown conformational changes of amino acid residues in proximity of the bimetallic active site. As such, this study unravels the complexity of the Nia-L intermediate and reveals the importance of the protein scaffold in fine-tuning proton and electron dynamics in [NiFe]-hydrogenase.


Hydrogenase , Protons , Hydrogenase/chemistry , Catalysis , Catalytic Domain , Glutamic Acid/metabolism , Oxidation-Reduction
6.
Small ; 19(33): e2301258, 2023 Aug.
Article En | MEDLINE | ID: mdl-37086146

The low-temperature molecular precursor approach can be beneficial to conventional solid-state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single-step, room-temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2 (thf)1.5 . During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ-NiOOH) comprising edge-sharing (NiO6 ) layers with intercalated potassium ions and a d-spacing of 7.27 Å. Remarkably, the intercalated γ-NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ-NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm-2 ) and achieves outstandingly high current densities (>600 mA cm-2 ) for the selective, value-added oxidation of 5-hydroxymethylfurfural (HMF). The NiP-derived γ-NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room-temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition-metal pnictides.

7.
Chem Sci ; 14(11): 2826-2838, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36937599

[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.

8.
Nat Chem Biol ; 19(4): 498-506, 2023 04.
Article En | MEDLINE | ID: mdl-36702959

[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.


Cupriavidus necator , Hydrogenase , Catalytic Domain , Hydrogenase/chemistry , Hydrogenase/metabolism , Cupriavidus necator/chemistry , Cupriavidus necator/metabolism , Oxidation-Reduction , Nickel
9.
Small ; 19(16): e2206679, 2023 Apr.
Article En | MEDLINE | ID: mdl-36651137

The development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon-neutral economy. In this aspect, the low-temperature, single-source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII (PyHS)4 ][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm-2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate-intercalated γ-NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine-based organic substrates to value-added chemicals, with high efficiencies.

10.
Nanoscale ; 14(48): 18106-18114, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36448745

Here we aim to gain a mechanistic understanding of the formation of epitope-imprinted polymer nanofilms using a non-terminal peptide sequence, i.e. the peptide GFNCYFP (G485 to P491) of the SARS-CoV-2 receptor binding domain (RBD). This epitope is chemisorbed on the gold surface through the central cysteine 488 followed by the electrosynthesis of a ∼5 nm thick polyscopoletin film around the surface confined templates. The interaction of peptides and the parent RBD and spike protein with the imprinted polyscopoletin nanofilm was followed by electrochemical redox marker gating, surface enhanced infrared absorption spectroscopy and conductive AFM. Because the use of non-terminal epitopes is especially intricate, here we characterize the binding pockets through their interaction with 5 peptides rationally derived from the template sequence, i.e. implementing central single amino acid mismatch as well as elongations and truncations at its C- and N- termini. Already a single amino acid mismatch, i.e. the central Cys488 substituted by a serine, results in ca. 15-fold lower affinity. Further truncation of the peptides to tetrapeptide (EGFN) and hexapeptide (YFPLQS) results also in a significantly lower affinity. We concluded that the affinity towards the different peptides is mainly determined by the four amino acid motif CYFP present in the sequence of the template peptide. A higher affinity than that for the peptides is found for the parent proteins RBD and spike protein, which seems to be due to out of cavity effects caused by their larger footprint on the nanofilm surface.


COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Epitopes/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Peptides/metabolism , Amino Acids
11.
Chem Commun (Camb) ; 58(90): 12568-12571, 2022 Nov 10.
Article En | MEDLINE | ID: mdl-36279116

Human Endonuclease III (EndoIII), hNTH1, is an FeS containing enzyme which repairs oxidation damaged bases in DNA. We report here the first comparative biophysical study of full-length and an N-terminally truncated hNTH1, with a domain architecture homologous to bacterial EndoIII. Vibrational spectroscopy, spectroelectrochemistry and SAXS experiments reveal distinct properties of the two enzyme forms, and indicate that the N-terminal domain is important for DNA binding at the onset of damage recognition.


DNA Repair , Deoxyribonuclease (Pyrimidine Dimer) , Iron-Sulfur Proteins , Humans , DNA , Endonucleases/genetics , Iron-Sulfur Proteins/chemistry , Scattering, Small Angle , X-Ray Diffraction , Deoxyribonuclease (Pyrimidine Dimer)/chemistry
12.
J Am Chem Soc ; 144(37): 17022-17032, 2022 09 21.
Article En | MEDLINE | ID: mdl-36084022

NAD+-reducing [NiFe] hydrogenases are valuable biocatalysts for H2-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O2 and elevated temperatures, the soluble NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus (HtSH) is O2-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native HtSH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized HtSH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O2 levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O2 that could protect the enzyme from oxidative damage.


Hydrogenase , Alanine/metabolism , Aspartic Acid/metabolism , Catalytic Domain , Glutamic Acid/metabolism , Glutamine/metabolism , Hydrogenase/chemistry , Hydrogenophilaceae , Iron/chemistry , Ligands , NAD/metabolism , Nickel/chemistry , Oxidation-Reduction , Oxygen/chemistry
13.
Chemistry ; 28(54): e202201091, 2022 Sep 27.
Article En | MEDLINE | ID: mdl-35662280

Biological carbon dioxide (CO2 ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.


Carbon Dioxide , Formate Dehydrogenases , Amino Acids/metabolism , Azides , Binding Sites , Carbon Dioxide/chemistry , Cyanates , Formate Dehydrogenases/chemistry , Formates/chemistry , Oxidation-Reduction
14.
Front Microbiol ; 13: 894375, 2022.
Article En | MEDLINE | ID: mdl-35572669

Hydrogenases are biotechnologically relevant metalloenzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. The O2-tolerant [NiFe]-hydrogenases from Cupriavidus necator (formerly Ralstonia eutropha) are of particular interest as they maintain catalysis even in the presence of molecular oxygen. However, to meet the demands of biotechnological applications and scientific research, a heterologous production strategy is required to overcome the low production yields in their native host. We have previously used the regulatory hydrogenase (RH) from C. necator as a model for the development of such a heterologous hydrogenase production process in E. coli. Although high protein yields were obtained, the purified enzyme was inactive due to the lack of the catalytic center, which contains an inorganic nickel-iron cofactor. In the present study, we significantly improved the production process to obtain catalytically active RH. We optimized important factors such as O2 content, metal availability, production temperature and time as well as the co-expression of RH-specific maturase genes. The RH was successfully matured during aerobic cultivation of E. coli by co-production of seven hydrogenase-specific maturases and a nickel permease, which was confirmed by activity measurements and spectroscopic investigations of the purified enzyme. The improved production conditions resulted in a high yield of about 80 mg L-1 of catalytically active RH and an up to 160-fold space-time yield in E. coli compared to that in the native host C. necator [<0.1 U (L d) -1]. Our strategy has important implications for the use of E. coli K-12 and B strains in the recombinant production of complex metalloenzymes, and provides a blueprint for the production of catalytically active [NiFe]-hydrogenases in biotechnologically relevant quantities.

15.
Front Microbiol ; 13: 1073315, 2022.
Article En | MEDLINE | ID: mdl-36733774

Comprising at least a bipartite architecture, the large subunit of [NiFe]-hydrogenase harbors the catalytic nickel-iron site while the small subunit houses an array of electron-transferring Fe-S clusters. Recently, some [NiFe]-hydrogenase large subunits have been isolated showing an intact and redox active catalytic cofactor. In this computational study we have investigated one of these metalloproteins, namely the large subunit HoxG of the membrane-bound hydrogenase from Cupriavidus necator (CnMBH), targeting its conformational and mechanical stability using molecular modelling and long all-atom Gaussian accelerated molecular dynamics (GaMD). Our simulations predict that isolated HoxG is stable in aqueous solution and preserves a large portion of its mechanical properties, but loses rigidity in regions around the active site, in contrast to the MBH heterodimer. Inspired by biochemical data showing dimerization of the HoxG protein and IR measurements revealing an increased stability of the [NiFe] cofactor in protein preparations with higher dimer content, corresponding simulations of homodimeric forms were also undertaken. While the monomeric subunit contains several flexible regions, our data predicts a regained rigidity in homodimer models. Furthermore, we computed the electrostatic properties of models obtained by enhanced sampling with GaMD, which displays a significant amount of positive charge at the protein surface, especially in solvent-exposed former dimer interfaces. These data offer novel insights on the way the [NiFe] core is protected from de-assembly and provide hints for enzyme anchoring to surfaces, which is essential information for further investigations on these minimal enzymes.

16.
Biochemistry ; 60(40): 2967-2977, 2021 10 12.
Article En | MEDLINE | ID: mdl-34570488

Phytochromes switch between a physiologically inactive and active state via a light-induced reaction cascade, which is initiated by isomerization of the tetrapyrrole chromophore and leads to the functionally relevant secondary structure transition of a protein segment (tongue). Although details of the underlying cause-effect relationships are not known, electrostatic fields are likely to play a crucial role in coupling chromophores and protein structural changes. Here, we studied local electric field changes during the photoconversion of the dark state Pfr to the photoactivated state Pr of the bathy phytochrome Agp2. Substituting Tyr165 and Phe192 in the chromophore pocket by para-cyanophenylalanine (pCNF), we monitored the respective nitrile stretching modes in the various states of photoconversion (vibrational Stark effect). Resonance Raman and IR spectroscopic analyses revealed that both pCNF-substituted variants undergo the same photoinduced structural changes as wild-type Agp2. Based on a structural model for the Pfr state of F192pCNF, a molecular mechanical-quantum mechanical approach was employed to calculate the electric field at the nitrile group and the respective stretching frequency, in excellent agreement with the experiment. These calculations serve as a reference for determining the electric field changes in the photoinduced states of F192pCNF. Unlike F192pCNF, the nitrile group in Y165pCNF is strongly hydrogen bonded such that the theoretical approach is not applicable. However, in both variants, the largest changes of the nitrile stretching modes occur in the last step of the photoconversion, supporting the view that the proton-coupled restructuring of the tongue is accompanied by a change of the electric field.


Bacterial Proteins/chemistry , Phytochrome/chemistry , Agrobacterium/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/radiation effects , Binding Sites , Light , Molecular Dynamics Simulation , Mutation , Nitriles/chemistry , Phytochrome/genetics , Phytochrome/metabolism , Phytochrome/radiation effects , Protein Conformation/radiation effects , Static Electricity , Stereoisomerism , Tetrapyrroles/chemistry , Tetrapyrroles/metabolism
17.
Molecules ; 26(16)2021 Aug 11.
Article En | MEDLINE | ID: mdl-34443440

Vibrational spectroscopy and in particular, resonance Raman (RR) spectroscopy, can provide molecular details on metalloproteins containing multiple cofactors, which are often challenging for other spectroscopies. Due to distinct spectroscopic fingerprints, RR spectroscopy has a unique capacity to monitor simultaneously and independently different metal cofactors that can have particular roles in metalloproteins. These include e.g., (i) different types of hemes, for instance hemes c, a and a3 in caa3-type oxygen reductases, (ii) distinct spin populations, such as electron transfer (ET) low-spin (LS) and catalytic high-spin (HS) hemes in nitrite reductases, (iii) different types of Fe-S clusters, such as 3Fe-4S and 4Fe-4S centers in di-cluster ferredoxins, and (iv) bi-metallic center and ET Fe-S clusters in hydrogenases. IR spectroscopy can provide unmatched molecular details on specific enzymes like hydrogenases that possess catalytic centers coordinated by CO and CN- ligands, which exhibit spectrally well separated IR bands. This article reviews the work on metalloproteins for which vibrational spectroscopy has ensured advances in understanding structural and mechanistic properties, including multiple heme-containing proteins, such as nitrite reductases that house a notable total of 28 hemes in a functional unit, respiratory chain complexes, and hydrogenases that carry out the most fundamental functions in cells.


Metalloproteins/chemistry , Spectrum Analysis, Raman , Heme/chemistry , Iron-Sulfur Proteins/chemistry , Oxidation-Reduction , Spectrophotometry, Infrared
18.
Sci Adv ; 7(22)2021 05.
Article En | MEDLINE | ID: mdl-34049880

Besides its role in biological nitrogen fixation, vanadium-containing nitrogenase also reduces carbon monoxide (CO) to hydrocarbons, in analogy to the industrial Fischer-Tropsch process. The protein yields 93% of ethylene (C2H4), implying a C-C coupling step that mandates the simultaneous binding of two CO at the active site FeV cofactor. Spectroscopic data indicated multiple CO binding events, but structural analyses of Mo and V nitrogenase only confirmed a single site. Here, we report the structure of a two CO-bound state of V nitrogenase at 1.05 Å resolution, with one µ-bridging and one terminal CO molecule. This additional, specific ligand binding site suggests a mechanistic route for CO reduction and hydrocarbon formation, as well as a second access pathway for protons required during the reaction. Moreover, carbonyls are strong-field ligands that are chemically similar to mechanistically relevant hydrides that may be formed and used in a fully analogous fashion.

19.
Angew Chem Int Ed Engl ; 60(29): 15854-15862, 2021 07 12.
Article En | MEDLINE | ID: mdl-33783938

To study metalloenzymes in detail, we developed a new experimental setup allowing the controlled preparation of catalytic intermediates for characterization by various spectroscopic techniques. The in situ monitoring of redox transitions by infrared spectroscopy in enzyme lyophilizate, crystals, and solution during gas exchange in a wide temperature range can be accomplished as well. Two O2 -tolerant [NiFe]-hydrogenases were investigated as model systems. First, we utilized our platform to prepare highly concentrated hydrogenase lyophilizate in a paramagnetic state harboring a bridging hydride. This procedure proved beneficial for 57 Fe nuclear resonance vibrational spectroscopy and revealed, in combination with density functional theory calculations, the vibrational fingerprint of this catalytic intermediate. The same in situ IR setup, combined with resonance Raman spectroscopy, provided detailed insights into the redox chemistry of enzyme crystals, underlining the general necessity to complement X-ray crystallographic data with spectroscopic analyses.


Hydrogenase/chemistry , Hydrogenase/metabolism , Solvents/chemistry , Catalytic Domain , Crystallography, X-Ray , Freeze Drying , Models, Molecular , Oxidation-Reduction
20.
Angew Chem Int Ed Engl ; 59(38): 16786-16794, 2020 09 14.
Article En | MEDLINE | ID: mdl-32488975

[FeFe] hydrogenases are the most active H2 converting catalysts in nature, but their extreme oxygen sensitivity limits their use in technological applications. The [FeFe] hydrogenases from sulfate reducing bacteria can be purified in an O2 -stable state called Hinact . To date, the structure and mechanism of formation of Hinact remain unknown. Our 1.65 Šcrystal structure of this state reveals a sulfur ligand bound to the open coordination site. Furthermore, in-depth spectroscopic characterization by X-ray absorption spectroscopy (XAS), nuclear resonance vibrational spectroscopy (NRVS), resonance Raman (RR) spectroscopy and infrared (IR) spectroscopy, together with hybrid quantum mechanical and molecular mechanical (QM/MM) calculations, provide detailed chemical insight into the Hinact state and its mechanism of formation. This may facilitate the design of O2 -stable hydrogenases and molecular catalysts.


Clostridium beijerinckii/enzymology , Hydrogen/metabolism , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Oxygen/metabolism , Sulfur/metabolism , Catalytic Domain , Crystallography, X-Ray , Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oxygen/chemistry , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Sulfur/chemistry , X-Ray Absorption Spectroscopy
...