Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Neurosci ; 36(44): 11171-11184, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27807161

RESUMEN

Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep. SIGNIFICANCE STATEMENT: Many people who find it hard to get to sleep take sedatives. Zolpidem (Ambien) is the most widely prescribed "sleeping pill." It makes the inhibitory neurotransmitter GABA work better at its receptors throughout the brain. The sleep induced by zolpidem does not resemble natural sleep because it produces a lower power in the brain waves that occur while we are sleeping. We show using mouse genetics that zolpidem only needs to work on specific parts and cell types of the brain, including histamine neurons in the hypothalamus, to induce sleep but without reducing the power of the sleep. This knowledge could help in the design of sleeping pills that induce a more natural sleep.


Asunto(s)
Neocórtex/fisiología , Neuronas/fisiología , Piridinas/administración & dosificación , Receptores de GABA-A/metabolismo , Sueño/efectos de los fármacos , Sueño/fisiología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Histamínicos/administración & dosificación , Hipnóticos y Sedantes/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Fármacos Inductores del Sueño/administración & dosificación , Zolpidem
3.
Neuron ; 87(1): 164-78, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26094607

RESUMEN

Histaminergic neurons in the tuberomammilary nucleus (TMN) of the hypothalamus form a widely projecting, wake-active network that sustains arousal. Yet most histaminergic neurons contain GABA. Selective siRNA knockdown of the vesicular GABA transporter (vgat, SLC32A1) in histaminergic neurons produced hyperactive mice with an exceptional amount of sustained wakefulness. Ablation of the vgat gene throughout the TMN further sharpened this phenotype. Optogenetic stimulation in the caudate-putamen and neocortex of "histaminergic" axonal projections from the TMN evoked tonic (extrasynaptic) GABAA receptor Cl(-) currents onto medium spiny neurons and pyramidal neurons. These currents were abolished following vgat gene removal from the TMN area. Thus wake-active histaminergic neurons generate a paracrine GABAergic signal that serves to provide a brake on overactivation from histamine, but could also increase the precision of neocortical processing. The long range of histamine-GABA axonal projections suggests that extrasynaptic inhibition will be coordinated over large neocortical and striatal areas.


Asunto(s)
Histamina/metabolismo , Área Hipotalámica Lateral/metabolismo , Neocórtex/metabolismo , Neostriado/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Vigilia/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Axones , Técnicas de Silenciamiento del Gen , Ratones , Inhibición Neural/genética , Optogenética , Células Piramidales/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Vigilia/genética
4.
Nat Neurosci ; 18(4): 553-561, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25706476

RESUMEN

Do sedatives engage natural sleep pathways? It is usually assumed that anesthetic-induced sedation and loss of righting reflex (LORR) arise by influencing the same circuitry to lesser or greater extents. For the α2 adrenergic receptor agonist dexmedetomidine, we found that sedation and LORR were in fact distinct states, requiring different brain areas: the preoptic hypothalamic area and locus coeruleus (LC), respectively. Selective knockdown of α2A adrenergic receptors from the LC abolished dexmedetomidine-induced LORR, but not sedation. Instead, we found that dexmedetomidine-induced sedation resembled the deep recovery sleep that follows sleep deprivation. We used TetTag pharmacogenetics in mice to functionally mark neurons activated in the preoptic hypothalamus during dexmedetomidine-induced sedation or recovery sleep. The neuronal ensembles could then be selectively reactivated. In both cases, non-rapid eye movement sleep, with the accompanying drop in body temperature, was recapitulated. Thus, α2 adrenergic receptor-induced sedation and recovery sleep share hypothalamic circuitry sufficient for producing these behavioral states.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Sedación Profunda , Dexmedetomidina/farmacología , Hipnóticos y Sedantes/farmacología , Hipotálamo/efectos de los fármacos , Sueño/efectos de los fármacos , Animales , Electroencefalografía , Hipotálamo/fisiología , Hipotermia/inducido químicamente , Locus Coeruleus/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Farmacogenética
5.
J Neurosci ; 32(38): 13062-75, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22993424

RESUMEN

The activity of histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus correlates with an animal's behavioral state and maintains arousal. We examined how GABAergic inputs onto histaminergic neurons regulate this behavior. A prominent hypothesis, the "flip-flop" model, predicts that increased and sustained GABAergic drive onto these cells promotes sleep. Similarly, because of the histaminergic neurons' key hub-like place in the arousal circuitry, it has also been suggested that anesthetics such as propofol induce loss of consciousness by acting primarily at histaminergic neurons. We tested both these hypotheses in mice by genetically removing ionotropic GABA(A) or metabotropic GABA(B) receptors from histidine decarboxylase-expressing neurons. At the cellular level, histaminergic neurons deficient in synaptic GABA(A) receptors were significantly more excitable and were insensitive to the anesthetic propofol. At the behavioral level, EEG profiles were recorded in nontethered mice over 24 h. Surprisingly, GABAergic transmission onto histaminergic neurons had no effect in regulating the natural sleep-wake cycle and, in the case of GABA(A) receptors, for propofol-induced loss of righting reflex. The latter finding makes it unlikely that the histaminergic TMN has a central role in anesthesia. GABA(B) receptors on histaminergic neurons were dispensable for all behaviors examined. Synaptic inhibition of histaminergic cells by GABA(A) receptors, however, was essential for habituation to a novel environment.


Asunto(s)
Neuronas GABAérgicas/fisiología , Histamina/metabolismo , Inhibición Neural/fisiología , Sueño/fisiología , Inconsciencia/fisiopatología , Vigilia/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Biofisica , Encéfalo/metabolismo , Estimulación Eléctrica , Electroencefalografía , Electromiografía , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Habituación Psicofisiológica/genética , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Hipnóticos y Sedantes/efectos adversos , Área Hipotalámica Lateral/citología , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Técnicas de Placa-Clamp , Propofol/efectos adversos , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/metabolismo , ARN no Traducido , Receptores de GABA-A/deficiencia , Reflejo/efectos de los fármacos , Reflejo/genética , Sueño/efectos de los fármacos , Sueño/genética , Inconsciencia/inducido químicamente , Vigilia/genética , beta-Galactosidasa/metabolismo
6.
Can J Anaesth ; 58(2): 139-48, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21170623

RESUMEN

PURPOSE: The mechanisms through which general anesthetics cause reversible loss of consciousness are characterized poorly. In this review, we examine the evidence that anesthetic-induced loss of consciousness may be caused by actions on the neuronal pathways that produce natural sleep. PRINCIPAL FINDINGS: It is clear that many general anesthetics produce effects in the brain (detected on electroencephalogram recordings) that are similar to those seen during non-rapid eye movement non-(REM) sleep. Gamma aminobutyric acid (GABA)ergic hypnogenic neurons are thought to be critical for generating non-REM sleep through their inhibitory projections to wake-active regions of the brain. The postsynaptic GABA(A) receptor is a major molecular target of many anesthetics and thus may be a point of convergence between natural sleep and anesthesia. Furthermore, we also present growing evidence in this review that modulating wake-active neurotransmitter (e.g., acetylcholine, histamine) release can impact on anesthesia, supporting the idea that this point of convergence is at the level of the brain arousal systems. CONCLUSIONS: While it is clear that general anesthetics can have effects at various points in the sleep-wake circuitry, it remains to be seen which points are true anesthetic targets. It will be challenging to separate non-specific effects on baseline arousal from a causal mechanism. Sophisticated experimental approaches are necessary to address basic mechanisms of sleep and anesthesia and should advance our understanding in both of these fields.


Asunto(s)
Anestésicos Generales/farmacología , Vías Nerviosas/efectos de los fármacos , Sueño/fisiología , Animales , Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Electroencefalografía , Humanos , Vías Nerviosas/fisiología , Fases del Sueño/fisiología
7.
Proc Natl Acad Sci U S A ; 106(41): 17546-51, 2009 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-19805135

RESUMEN

TASK channels are acid-sensitive and anesthetic-activated members of the family of two-pore-domain potassium channels. We have made the surprising discovery that the genetic ablation of TASK-3 channels eliminates a specific type of theta oscillation in the cortical electroencephalogram (EEG) resembling type II theta (4-9 Hz), which is thought to be important in processing sensory stimuli before initiating motor activity. In contrast, ablation of TASK-1 channels has no effect on theta oscillations. Despite the absence of type II theta oscillations in the TASK-3 knockout (KO) mice, the related type I theta, which has certain neuronal pathways in common and is involved in exploratory behavior, is unaffected. In addition to the absence of type II theta oscillations, the TASK-3 KO animals show marked alterations in both anesthetic sensitivity and natural sleep behavior. Their sensitivity to halothane, a potent activator of TASK channels, is greatly reduced, whereas their sensitivity to cyclopropane, which does not activate TASK-3 channels, is unchanged. The TASK-3 KO animals exhibit a slower progression from their waking to sleeping states and, during their sleeping period, their sleep episodes as well as their REM theta oscillations are more fragmented. These results imply a previously unexpected role for TASK-3 channels in the cellular mechanisms underlying these behaviors and suggest that endogenous modulators of these channels may regulate theta oscillations.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/genética , Sueño/fisiología , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Electroencefalografía , Electromiografía , Genotipo , Ratones , Ratones Noqueados , Oscilometría , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Vigilia/fisiología
9.
J Neurosci ; 29(7): 2177-87, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19228970

RESUMEN

The GABA(A) receptor has been identified as the single most important target for the intravenous anesthetic propofol. How effects at this receptor are then translated into a loss of consciousness, however, remains a mystery. One possibility is that anesthetics act on natural sleep pathways. Here, we test this hypothesis by exploring the anesthetic sensitivities of GABAergic synaptic currents in three specific brain nuclei that are known to be involved in sleep. Using whole-cell electrophysiology, we have recorded GABAergic IPSCs from the tuberomammillary nucleus (TMN), the perifornical area (Pef), and the locus ceruleus (LC) in brain slices from both wild-type mice and mice that carry a specific mutation in the GABA(A) receptor beta(3) subunit (N265M), which greatly reduces their sensitivity to propofol, but not to the neurosteroid alphaxalone. We find that this in vivo pattern of anesthetic sensitivity is mirrored in the hypothalamic TMN and Pef nuclei, consistent with their role as direct anesthetic targets. In contrast, anesthetic sensitivity in the LC was unaffected by the beta(3)N265M mutation, ruling out this nucleus as a major target for propofol. In support of the hypothesis that orexinergic neurons in the Pef are involved in propofol anesthesia, we further show that these neurons are selectively inhibited by GABAergic drugs in vivo during anesthesia, and that a modulation in the activity of Pef neurons alone can affect loss of righting reflex. Overall, our results support the idea that GABAergic anesthetics such as propofol exert their effects, at least in part, by modulating hypothalamic sleep pathways.


Asunto(s)
Anestésicos Generales/farmacología , Hipotálamo/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Sueño/efectos de los fármacos , Animales , Técnicas de Sustitución del Gen , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Hipotálamo/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Técnicas de Cultivo de Órganos , Propofol/farmacología , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Sueño/fisiología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA