Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Article En | MEDLINE | ID: mdl-34520734

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Cell Cycle/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Neoplasms/drug therapy , Female , Humans , Male , Neoplasms/immunology
2.
J Med Chem ; 64(13): 9056-9077, 2021 07 08.
Article En | MEDLINE | ID: mdl-34110834

Control of the cell cycle through selective pharmacological inhibition of CDK4/6 has proven beneficial in the treatment of breast cancer. Extending this level of control to additional cell cycle CDK isoforms represents an opportunity to expand to additional tumor types and potentially provide benefits to patients that develop tumors resistant to selective CDK4/6 inhibitors. However, broad-spectrum CDK inhibitors have a long history of failure due to safety concerns. In this approach, we describe the use of structure-based drug design and Free-Wilson analysis to optimize a series of CDK2/4/6 inhibitors. Further, we detail the use of molecular dynamics simulations to provide insights into the basis for selectivity against CDK9. Based on overall potency, selectivity, and ADME profile, PF-06873600 (22) was identified as a candidate for the treatment of cancer and advanced to phase 1 clinical trials.


Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Injections, Intravenous , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
3.
J Med Chem ; 64(3): 1725-1732, 2021 02 11.
Article En | MEDLINE | ID: mdl-33529029

A pyridone-derived phosphate prodrug of an enhancer of zeste homolog 2 (EZH2) inhibitor was designed and synthesized to improve the inhibitor's aqueous solubility. This prodrug (compound 5) was profiled in pharmacokinetic experiments to assess its ability to deliver the corresponding parent compound (compound 2) to animals in vivo following oral administration. Results from these studies showed that the prodrug was efficiently converted to its parent compound in vivo. In separate experiments, the prodrug demonstrated impressive in vivo tumor growth inhibition in a diffuse large B-cell lymphoma Karpas-422 cell line-derived xenograft model. The described prodrug strategy is expected to be generally applicable to poorly soluble pyridone-containing EZH2 inhibitors and provides a new option to enable such compounds to achieve sufficiently high exposures in vivo.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Humans , Lymphoma, B-Cell/drug therapy , Mice , Models, Molecular , Prodrugs/pharmacokinetics , Pyridones/pharmacokinetics , Rats , Xenograft Model Antitumor Assays
4.
J Med Chem ; 64(1): 644-661, 2021 01 14.
Article En | MEDLINE | ID: mdl-33356246

The phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is a frequently dysregulated pathway in human cancer, and PI3Kα is one of the most frequently mutated kinases in human cancer. A PI3Kα-selective inhibitor may provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family. Here, we describe our efforts to discover a PI3Kα-selective inhibitor by applying structure-based drug design (SBDD) and computational analysis. A novel series of compounds, exemplified by 2,2-difluoroethyl (3S)-3-{[2'-amino-5-fluoro-2-(morpholin-4-yl)-4,5'-bipyrimidin-6-yl]amino}-3-(hydroxymethyl)pyrrolidine-1-carboxylate (1) (PF-06843195), with high PI3Kα potency and unique PI3K isoform and mTOR selectivity were discovered. We describe here the details of the design and synthesis program that lead to the discovery of 1.


Drug Design , Phosphatidylinositol 3-Kinases/drug effects , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Animals , Cell Line , Chromatography, High Pressure Liquid/methods , Crystallography, X-Ray , Humans , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods , Mice , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Rats , Spectrometry, Mass, Electrospray Ionization/methods
5.
J Med Chem ; 61(3): 650-665, 2018 02 08.
Article En | MEDLINE | ID: mdl-29211475

A new series of lactam-derived EZH2 inhibitors was designed via ligand-based and physicochemical-property-based strategies to address metabolic stability and thermodynamic solubility issues associated with previous lead compound 1. The new inhibitors incorporated an sp3 hybridized carbon atom at the 7-position of the lactam moiety present in lead compound 1 as a replacement for a dimethylisoxazole group. This transformation enabled optimization of the physicochemical properties and potency compared to compound 1. Analysis of relationships between calculated log D (clogD) values and in vitro metabolic stability and permeability parameters identified a clogD range that afforded an increased probability of achieving favorable ADME data in a single molecule. Compound 23a exhibited the best overlap of potency and pharmaceutical properties as well as robust tumor growth inhibition in vivo and was therefore advanced as a development candidate (PF-06821497). A crystal structure of 23a in complex with the three-protein PRC2 complex enabled understanding of the key structural features required for optimal binding.


Drug Design , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Isoquinolines/pharmacology , Isoquinolines/pharmacokinetics , Administration, Oral , Biological Availability , Cell Line, Tumor , Humans , Isoquinolines/administration & dosage , Isoquinolines/chemistry , Models, Molecular , Molecular Conformation
7.
J Med Chem ; 59(18): 8306-25, 2016 Sep 22.
Article En | MEDLINE | ID: mdl-27512831

A new enhancer of zeste homolog 2 (EZH2) inhibitor series comprising a substituted phenyl ring joined to a dimethylpyridone moiety via an amide linkage has been designed. A preferential amide torsion that improved the binding properties of the compounds was identified for this series via computational analysis. Cyclization of the amide linker resulted in a six-membered lactam analogue, compound 18. This transformation significantly improved the ligand efficiency/potency of the cyclized compound relative to its acyclic analogue. Additional optimization of the lactam-containing EZH2 inhibitors focused on lipophilic efficiency (LipE) improvement, which provided compound 31. Compound 31 displayed improved LipE and on-target potency in both biochemical and cellular readouts relative to compound 18. Inhibitor 31 also displayed robust in vivo antitumor growth activity and dose-dependent de-repression of EZH2 target genes.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Pyridones/chemistry , Pyridones/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cyclization , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Lactams/chemistry , Lactams/pharmacology , Mice , Mice, SCID , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Pyridones/therapeutic use
8.
Bioorg Med Chem Lett ; 25(7): 1532-7, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25746813

A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50's against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.


Polycomb Repressive Complex 2/antagonists & inhibitors , S-Adenosylhomocysteine/pharmacology , Dose-Response Relationship, Drug , Drug Design , Enhancer of Zeste Homolog 2 Protein , Humans , Models, Molecular , Molecular Structure , S-Adenosylhomocysteine/chemical synthesis , S-Adenosylhomocysteine/chemistry , Structure-Activity Relationship
9.
J Med Chem ; 54(9): 3368-85, 2011 May 12.
Article En | MEDLINE | ID: mdl-21438541

A novel class of heat shock protein 90 (Hsp90) inhibitors was discovered by high-throughput screening and was subsequently optimized using a combination of structure-based design, parallel synthesis, and the application of medicinal chemistry principles. Through this process, the biochemical and cell-based potency of the original HTS lead were substantially improved along with the corresponding metabolic stability properties. These efforts culminated with the identification of a development candidate (compound 42) which displayed desired PK/PD relationships, significant efficacy in a melanoma A2058 xenograft tumor model, and attractive DMPK profiles.


Antineoplastic Agents/chemical synthesis , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Binding, Competitive , Biological Availability , Blood Proteins/metabolism , Cell Line, Tumor , Cell Membrane Permeability , Drug Screening Assays, Antitumor , Drug Stability , Female , Humans , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques , Male , Melanoma/drug therapy , Melanoma/pathology , Mice , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Neoplasm Transplantation , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Transplantation, Heterologous
10.
Bioorg Med Chem Lett ; 16(23): 6120-3, 2006 Dec 01.
Article En | MEDLINE | ID: mdl-16973358

A series of novel pyridine-3-propanoic acids was synthesized. A structure-activity relationship study of these compounds led to the identification of potent dual PPARalpha/gamma agonists with varied isoform selectivity. Based on the results of efficacy studies in diabetic (db/db) mice, and the desired pharmacokinetic parameters, compounds (S)-14 and (S)-19 were selected for further profiling.


Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Pyridines/blood , Pyridines/pharmacology , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Cell Line, Tumor , Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Diabetes Mellitus/pathology , Ether/chemistry , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Mice , Molecular Structure , PPAR alpha/metabolism , PPAR gamma/metabolism , Pyridines/chemical synthesis , Pyridines/therapeutic use , Structure-Activity Relationship , Thiazolidinediones/chemistry
11.
Bioorg Med Chem Lett ; 15(11): 2829-33, 2005 Jun 02.
Article En | MEDLINE | ID: mdl-15911263

The structure-based design, chemical synthesis, and biological evaluation of novel MTAP substrates are described. These compounds incorporate various C5'-moieties and are shown to have different k(cat)/K(m) values compared with the natural MTAP substrate (MTA).


Purine-Nucleoside Phosphorylase/metabolism , Drug Design , Humans , Molecular Structure , Substrate Specificity
12.
J Org Chem ; 68(5): 1729-35, 2003 Mar 07.
Article En | MEDLINE | ID: mdl-12608785

A detailed account regarding a formal [3 + 3] cycloaddition method using 4-hydroxy-2-pyrones and 1,3-diketones is described here. This formal cycloaddition reaction or annulation reaction is synthetically useful for constructing 2H-pyranyl heterocycles. The usage of alpha,beta-unsaturated iminium salts is significant in controlling competing reaction pathways to give exclusively 2H-pyrans. Most significantly, experimental evidence is provided to support the mechanism of this reaction that involves a sequential Knoevenagel condensation and a reversible 6pi-electron electrocyclic ring-closure of 1-oxatrienes.


Chemistry, Organic/methods , Ketones/chemistry , Pyrans/chemical synthesis , Pyrones/chemistry , Alkenes/chemistry , Catalysis , Crystallography, X-Ray , Cyclization , Imines/chemistry , Indicators and Reagents , Magnetic Resonance Spectroscopy , Molecular Structure , Oxidation-Reduction , Salts/chemical synthesis , Stereoisomerism
...