Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 17(5): 446-459, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35414116

RESUMEN

X-ray computed tomography (CT) is a non-destructive imaging technique in which contrast originates from the materials' absorption coefficient. The recent development of laboratory nanoscale CT (nano-CT) systems has pushed the spatial resolution for battery material imaging to voxel sizes of 50 nm, a limit previously achievable only with synchrotron facilities. Given the non-destructive nature of CT, in situ and operando studies have emerged as powerful methods to quantify morphological parameters, such as tortuosity factor, porosity, surface area and volume expansion, during battery operation or cycling. Combined with artificial intelligence and machine learning analysis techniques, nano-CT has enabled the development of predictive models to analyse the impact of the electrode microstructure on cell performances or the influence of material heterogeneities on electrochemical responses. In this Review, we discuss the role of X-ray CT and nano-CT experimentation in the battery field, discuss the incorporation of artificial intelligence and machine learning analyses and provide a perspective on how the combination of multiscale CT imaging techniques can expand the development of predictive multiscale battery behavioural models.


Asunto(s)
Inteligencia Artificial , Tomografía Computarizada por Rayos X , Electrodos , Porosidad , Tomografía Computarizada por Rayos X/métodos
2.
RSC Adv ; 9(37): 21451-21459, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35521323

RESUMEN

The temperature and phase stability of p-type skutterudites, DD0.7Fe3CoSb12, manufactured via various preparation techniques, all exhibiting a high ZT-level, have been studied by means of thermal analysis and Knudsen effusion mass spectrometry. The results from phase transformation measurements and characteristics of the evaporation of antimony, as the volatile element, supported by microstructure observations and by diffusion profiles are summarized and discussed in view of a full understanding of the degradation processes and knowledge of the long term operation stability of the bulk and nano-structured thermoelectrics studied. It was found out that the antimony evaporation is a complex diffusion kinetic process resulting in a stable Sb level dependent on the preparation route. The studied p-type skutterudites, DD0.7Fe3CoSb12, have proven their long term stability in thermoelectric devices at a maximum operation temperature of 600 °C. Complementary data on the structural, physical and mechanical properties of the materials are presented as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...