Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Inform Med Unlocked ; 36: 101147, 2023.
Article En | MEDLINE | ID: mdl-36510496

Vaccines are undoubtedly the most effective means of combating viral diseases like COVID-19. However, there are risks associated with vaccination, such as incomplete viral deactivation or potential adverse effects in humans. However, designing and developing a panel of new drug molecules is always encouraged. In an emergency, drug repurposing research is one of the most potent and rapid options. RdRp (RNA-dependent RNA polymerase) has been discovered to play a pivotal role in viral replication. In this study, FDA-approved drugs bexarotene, diiodohydroxyquinoline, abiraterone, cetilistat, and remdesivir were repurposed against the RdRp by molecular modeling, docking, and dynamic simulation. Furthermore, to validate the potency of these drugs, we compared them to the antiviral remdesivir, which inhibits RdRp. Our finding indicated that the selected drugs have a high potential to be developed as RdRp inhibitors and, with further validation studies, could serve as potential drugs for the treatment of COVID-19.

2.
J Biomol Struct Dyn ; 41(6): 2300-2320, 2023 04.
Article En | MEDLINE | ID: mdl-35120416

In this study, nanoparticles with both anticancer and antibacterial features were synthesized through loading chlorogenic acid (CGA) of essential oils on magnetic nanoparticles (MNPs). Characterization of γ-Fe2O3@SiO2-CGA MNPs was performed using Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) that show effective coating of the MNPs with SiO2 and CGA ligand and spherical shape of the nanoparticles with a mean diameter of 16 nm, respectively. The cytotoxicity study demonstrated that γ-Fe2O3@SiO2-CGA MNPs had fewer toxic effects on normal cells (Huvec) than on cancerous cells (U-87 MG, A-2780 and A-549), and could be a new potential candidate for use in biological and pharmaceutical applications. The interaction of calf thymus deoxyribonucleic acid (ct-DNA) with γ-Fe2O3@SiO2-CGA MNPs indicated that the anticancer activity might be associated with the DNA binding properties of γ-Fe2O3@SiO2-CGA MNPs. Moreover, the interaction of γ-Fe2O3@SiO2-CGA MNPs with human serum albumin (HSA) suggests that the native conformation of HSA was preserved at the level of secondary structure, indicating that the γ-Fe2O3@SiO2-CGA MNPs do not show any cytotoxicity effect when they are injected into the blood. Antibacterial tests were performed and represented γ-Fe2O3@SiO2-CGA MNPs attained better antibacterial function than CGA as free.


Magnetite Nanoparticles , Nanoparticles , Humans , Serum Albumin, Human , Chlorogenic Acid/pharmacology , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Pharmaceutical Preparations , DNA/chemistry , Magnetite Nanoparticles/chemistry
3.
Nucleosides Nucleotides Nucleic Acids ; 41(10): 994-1011, 2022.
Article En | MEDLINE | ID: mdl-35815694

In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared via a chemical coprecipitation reaction, and the surface of Fe3O4 MNPs was coated with silica by a sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an antioxidant agent, trans-ferulic acid, to achieve water-soluble MNPs for biological applications. Fourier transform infrared spectroscopy (FT-IR) showed that the MNPs were successfully coated with SiO2 and ferulic acid (FA) ligand. The morphology of γ-Fe2O3@SiO2-FA MNPs was found to be spherical in images of transmission electron microscopy (TEM) and showed a uniform size distribution with an average diameter of 21 nm. The in vitro cytotoxic activity of γ-Fe2O3@SiO2-FA MNPs and FA were investigated against the human cancer cells (MCF-7, PC-3, U-87 MG, A-2780, and A-549) by MTT colorimetric assay. The cytotoxic effect of MNPs on all cancer cell lines was several times of magnitude higher compared to free FA except for A-549 cell lines. Furthermore, in vitro DNA binding studies were investigated by UV-vis and circular dichroism spectroscopies.


Antineoplastic Agents , Nanoparticles , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Coumaric Acids , DNA , Humans , Ligands , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Water
4.
Inform Med Unlocked ; 29: 100902, 2022.
Article En | MEDLINE | ID: mdl-35284620

The unexpected appearance and global spread of COVID-19 create significant difficulties for healthcare systems and present an unusual challenge for the fast discovery of medicines to combat this fatal disease. Screening metallodrugs libraries from the medicinal inorganic chemistry society may expand the studied 'chemical space' and improve the probability of discovering effective anti-COVID drugs, including polyoxometalates. POMs are an oxygen-rich family of inorganic cluster systems that have previously been tested for antiviral action against different types of viruses. Human angiotensin-converting enzyme 2 (ACE2), human transmembrane protease serine 2 (TMPRSS2), and the SARS-CoV-2 spike glycoprotein are required for host cell-mediated viral entrance. Targeting these proteins demonstrates potential possibilities for preventing infections and transmissions in the initial stage. As a result, POMs with known antiviral effects were investigated for this purpose using molecular docking and dynamic simulations. This research shows that POMs can prevent SARS CoV-2 from entering cells by blocking TMPRSS2, which SARS-CoV-2 uses for spike glycoprotein priming. They may also engage with ACE2 and the spike glycoprotein and disrupt their binding by blocking the active sites. We think that a thorough investigation of POMs as possible anti-COVID-19 drugs will provide significant opportunities.

5.
J Biomol Struct Dyn ; 40(19): 8913-8924, 2022.
Article En | MEDLINE | ID: mdl-33928842

In this research, the biological activity of the antibacterial drug Chloroxine-conjugated biogenic AgNPs (COX-AgNPs) was investigated in simulated physiological conditions (pH = 7.40). Different spectroscopic methods such as UV-visible, fluorescence, and circular dichroism spectroscopic and docking simulation were employed to evaluate the structural changes in the most important blood proteins (human hemoglobin (HHb) and Cytochrome c (Cyt c)) in the presence of COX-AgNPs. The results showed that the COX-AgNPs can bind to HHb and Cyt c and the secondary structure of these proteins remains unchanged, which is crucial in providing insights into the side effects of newly synthesized drugs on their carriers.Communicated by Ramaswamy H. Sarma.


Metal Nanoparticles , Silver , Humans , Silver/chemistry , Molecular Docking Simulation , Cytochromes c , Circular Dichroism , Hemoglobins/chemistry , Metal Nanoparticles/chemistry
6.
Inform Med Unlocked ; 26: 100745, 2021.
Article En | MEDLINE | ID: mdl-34568544

By September 1, 2021, SARS-CoV-2, a respiratory virus that prompted Coronavirus Disease in 2019, had infected approximately 218,567,442 patients and claimed 4,534,151 lives. There are currently no specific treatments available for this lethal virus, although several drugs, including remdesivir and hydroxychloroquine, have been tested. The purpose of this study is to assess the activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine as potential SARS-CoV-2 main protease inhibitors. Additionally, this study aims to provide insight into the development of potential inhibitors that may inhibit ACE2, thereby preventing SARS-CoV-2 entry into the host cell and infection. To this end, remdesivir and hydroxychloroquine were used as comparator drugs. The calculations revealed that cetilistat, abiraterone, diiodohydroxyquinoline, and bexarotene inhibit main protease and ACE2 receptors more effectively than the well-known drug hydroxychloroquine when used against COVID-19. Meanwhile, bexarotene and cetilistat bind more tightly to the SARS-CoV-2 main protease and the ACE2 receptor, respectively, than remdesivir, a potential treatment for COVID-19 that is the first FDA-approved drug against this virus. As a result, the molecular dynamic simulations of these two drugs in the presence of proteins were investigated. The MD simulation results demonstrated that these drugs interact to stabilize the systems, allowing them to be used as effective inhibitors of these proteins. Meanwhile, bexarotene, abiraterone, cetilistat, and diiodohydroxyquinoline's systemic effects should be further investigated in suitable ex vivo human organ culture or organoids, animal models, or clinical trials.

7.
Biotechnol Rep (Amst) ; 30: e00615, 2021 Jun.
Article En | MEDLINE | ID: mdl-33948440

The aim of this study was the synthesis of selenium nanoparticles (SeNPs) employing vitamin C as a biocompatible and low toxic reducing agent. The synthesized selenium nanoparticles were characterized by using UV-vis, FT-IR, SEM-EDX, TEM, DLS, and zeta potential measurements. The results of the DPPH free radical scavenging assay demonstrate that this synthesized nano-selenium has strong potentials to scavenge the free radicals and cytotoxicity against MCF-7 and Raji Burkitt's lymphoma cancer cell lines. The interaction of calf thymus DNA (ct-DNA) with SeNPs indicated that the anticancer activity might be associated with the DNA-binding properties of nano-selenium. Finally, it was found that the synthesized nano-selenium can bind to the most important blood proteins such as human serum albumin (HSA), human hemoglobin (HHb), and Cytochrome c (Cyt c). The results showed that the secondary structure of these proteins remains unchanged, suggesting that the synthesized nano-selenium could be employed as a carrier in the drug delivery system without any cytotoxicity effect.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118042, 2020 Apr 05.
Article En | MEDLINE | ID: mdl-31972466

In the present study, the binding interactions of chloroxine, an antibacterial drug and antibiotic agent with calf thymus-deoxyribonucleic acid (ct-DNA) and human serum albumin (HSA) have been deliberated under simulative physiological conditions (pH = 7.40) employing multiple biophysical, atomic force microscopy and molecular modeling approaches. The ct-DNA binding properties of chloroxine exhibit that it binds to ct-DNA through a groove binding mode, and the binding constant values were computed employing the absorption and emission spectral data. The fluorescence study shows the presence of the static quenching mechanism in the ct-DNA- chloroxine interaction. These results are further supported by UV-vis spectra. Large complexes contain the ct-DNA chains with an average size of 225.45 nm were observed by employing AFM for chloroxine -ct-DNA. The results revealed that the fluorescence quenching of albumin by chloroxine was a static quenching process as a result of albumin-chloroxine (1:1) complex. The distance between chloroxine and albumin was obtained based on the Förster's theory of non-radiative energy transfer. The results of AFM, synchronous and three-dimensional fluorescence spectra all revealed that chloroxine induced the conformational changes of albumin. Molecular docking technology represents the binding of chloroxine to the major groove of ct-DNA and site I (subdomain II A) of albumin.


Anti-Bacterial Agents/metabolism , Chloroquinolinols/metabolism , DNA/metabolism , Indicators and Reagents/metabolism , Microscopy, Atomic Force/methods , Serum Albumin, Human/metabolism , Spectrometry, Fluorescence/methods , Anti-Bacterial Agents/chemistry , Binding Sites , Chloroquinolinols/chemistry , DNA/chemistry , Energy Transfer , Humans , Indicators and Reagents/chemistry , Models, Molecular , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human/chemistry , Thermodynamics
9.
Article En | MEDLINE | ID: mdl-31044667

The interaction of SnMe2Cl2(bu2bpy)complex with calf thymus DNA (ct-DNA) has been explored following, using spectroscopic methods, viscosity measurements, Atomic force microscopy, Thermal denaturation and Molecular docking. It was found that Sn(IV) complex could bind with DNA via intercalation mode as evidenced by hyperchromism and bathochromic in UV-Vis spectrum; these spectral characteristics suggest that the Sn(IV) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. In addition, the fluorescence emission spectra of intercalated methylene blue (MB) with increasing concentrations of SnMe2Cl2(bu2bpy) represented a significant increase of MB intensity as to release MB from MB-DNA system. Positive values of ΔH and ΔS imply that the complex is bound to ct-DNA mainly via the hydrophobic attraction. Large complexes contain the DNA chains with an average size of 859 nm were observed by using AFM for Sn(IV) Complex-DNA. The Fourier transform infrared study showed a major interaction of Sn(IV) complex with G-C and A-T base pairs and a minor perturbation of the backbone PO2 group. Addition of the Sn(IV)complex results in a noticeable rise in the Tm of DNA. In addition, the results of viscosity measurements suggest that SnMe2Cl2(bu2bpy) complex may bind with the classical intercalative mode. From spectroscopic and hydrodynamic studies, it has been found that Sn(IV)complex interacts with DNA by intercalation mode. Optimized docked model of DNA-complex mixture confirmed the experimental results.


DNA/chemistry , Microscopy, Atomic Force , Molecular Docking Simulation , Organotin Compounds/chemistry , Animals , Cattle , Circular Dichroism , Molecular Structure , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
...