Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Article En | MEDLINE | ID: mdl-38787395

PURPOSE: The advancement of heterodimeric tracers, renowned for their high sensitivity, marks a significant trend in the development of radiotracers for cancer diagnosis. Our prior work on [68Ga]Ga-HX01, a heterodimeric tracer targeting CD13 and integrin αvß3, led to its approval for phase I clinical trials by the China National Medical Production Administration (NMPA). However, its fast clearance and limited tumor retention pose challenges for broader clinical application in cancer treatment. This study aims to develop a new radiopharmaceutical with increased tumor uptake and prolonged retention, rendering it a potential therapeutic candidate. METHODS: New albumin binder-conjugated compounds were synthesized based on the structure of HX01. In vitro and in vivo evaluation of these new compounds were performed after labelling with 68Ga. Small-animal PET/CT imaging were conducted at different time points at 0.5-6 h post injection (p.i.) using BxPC-3 xenograft mice models. The one with the best imaging performance was further radiolabeled with 177Lu for small-animal SPECT/CT and ex vivo biodistribution investigation. RESULTS: We have synthesized novel albumin binder-conjugated compounds, building upon the structure of HX01. When radiolabeled with 68Ga, all compounds demonstrated improved pharmacokinetics (PK). Small-animal PET/CT studies revealed that these new albumin binder-conjugated compounds, particularly [68Ga]Ga-L6, exhibited significantly enhanced tumor accumulation and retention compared with [68Ga]Ga-L0 without an albumin binder. [68Ga]Ga-L6 outperformed [68Ga]Ga-L7, a compound developed using a previously reported albumin binder. Furthermore, [177Lu]Lu-L6 demonstrated rapid clearance from normal tissues, high tumor uptake, and prolonged retention in small-animal SPECT/CT and biodistribution studies, positioning it as an ideal candidate for radiotherapeutic applications. CONCLUSION: A new integrin αvß3 and CD13 targeting compound was screened out. This compound bears a novel albumin binder and exhibits increased tumor uptake and prolonged tumor retention in BxPC-3 tumors and low background in normal organs, making it a perfect candidate for radiotherapy when radiolabeled with 177Lu.

2.
Bioconjug Chem ; 35(5): 567-574, 2024 May 15.
Article En | MEDLINE | ID: mdl-38634516

The exploration of pharmaceutically active agents and positron emission tomography (PET) tracers targeting CXCR4 has been a focal point in cancer research given its pivotal role in the development and progression of various cancers. While significant strides have been made in PET imaging with radiometal-labeled tracers, the landscape of 18F-labeled small molecule tracers remains relatively limited. Herein, we introduce a novel and promising derivative, [18F]SFB-AMD3465, as a targeted PET tracer for CXCR4. The compound was synthesized by modifying the pyridine ring of AMD3465, which was subsequently labeled with 18F using [18F]SFB. The study provides comprehensive insights into the design, synthesis, and biological evaluation of [18F]SFB-AMD3465. In vitro and in vivo assessments demonstrated the CXCR4-dependent, specific, and sensitive uptake of [18F]SFB-AMD3465 in the CXCR4-overexpressing 4T1 cell line and the corresponding xenograft-bearing mouse model. These findings contribute to bridging the gap in 18F-labeled PET tracers for CXCR4 and underscore the potential of [18F]SFB-AMD3465 as a PET radiotracer for in vivo CXCR4 imaging.


Fluorine Radioisotopes , Positron-Emission Tomography , Receptors, CXCR4 , Animals , Receptors, CXCR4/analysis , Receptors, CXCR4/metabolism , Positron-Emission Tomography/methods , Mice , Fluorine Radioisotopes/chemistry , Female , Cell Line, Tumor , Humans , Pyridines/chemistry , Pyridines/pharmacokinetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
3.
Front Oncol ; 13: 1219608, 2023.
Article En | MEDLINE | ID: mdl-37746256

Background and objective: Lateral pelvic lymph node (LPLN) metastasis is one of the prominent reasons for local recurrence (LR) in patients with rectal cancer (RC). The evaluation criteria of lateral lymph node dissection (LLND) for patients in eastern (mainly in Japan) and western countries have been controversial. The aim of this study was to analyse the risk factors for LPLN metastasis in order to guide surgical methods. Methods: We searched relevant databases (Embase (Ovid), Medline (Ovid), PubMed, Cochrane Library, and Web of Science) for articles published between 1 January 2000 and 05 October 2022 to evaluate the risk factors for LPLN metastasis in patients with RC in this meta-analysis. Results: A total of 24 articles with 5843 patients were included in this study. The overall results showed that female sex, age <60 years, pretherapeutic CEA level >5 ng/ml, clinical T4 stage (cT4), clinical M1 stage (cM1), distance of the tumour from the anal verge (AV) <50 mm, tumour centre located below the peritoneal reflection (Rb), short axis (SA) of LPLN ≥8 mm before nCRT, short axis (SA) of LPLN ≥5 mm after nCRT, border irregularity of LPLN, tumour size ≥50 mm, pathological T3-4 stage (pT3-4), pathological N2 stage (pN2), mesorectal lymph node metastasis (MLNM), lymphatic invasion (LI), venous invasion (VI), CRM (+) and poor differentiation were significant risk factors for LPLN metastasis (P <0.05). Conclusion: This study summarized almost all potential risk factors of LPLN metastasis and expected to provide effective treatment strategies for patients with LRC. According to the risk factors of lateral lymph node metastasis, we can adopt different comprehensive treatment strategies. High-risk patients can perform lateral lymph node dissection to effectively reduce local recurrence; In low-risk patients, we can avoid overtreatment, reduce complications and trauma caused by lateral lymph node dissection, and maximize patient survival and quality of life.

4.
Eur J Nucl Med Mol Imaging ; 51(1): 54-67, 2023 12.
Article En | MEDLINE | ID: mdl-37642706

PURPOSE: The integrin αvß3 and aminopeptidase N (APN/CD13) play vital roles in the tumor angiogenesis process. They are highly expressed in a variety of tumor cells and proliferating endothelial cells during angiogenesis, which have been considered as highly promising targets for tumor imaging. Arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) are two peptides specifically binding to the integrin αvß3 and CD13, respectively. In this study, we optimized our previously developed probe and preclinically evaluated the new integrin αvß3 and CD13 dual-targeted probe, NOTA-RGD-NGR (denoted as HX01) radiolabeled with 68Ga, in 10 different subcutaneous and orthotopic tumor models. METHODS: The specific activity and radiochemical purity of [68Ga]Ga-HX01 were identified. The dual-receptor targeting ability was confirmed by a series of blocking studies and partly muted tracers using BxPC-3 xenograft model. The dynamic imaging study and dose escalation study were explored to determine the optimal imaging time point and dosage in the BxPC-3 xenograft model. Next, we established a variety of subcutaneous and orthotopic tumor models including pancreas (BxPC-3), breast (MCF-7), gallbladder (NOZ), lung (HCC827), ovary (SK-OV-3), colorectal (HCT-8), liver (HuH-7), stomach (NUGC-4), and glioma (U87) cancers. All models underwent [68Ga]Ga-HX01 PET/CT imaging about 2 weeks post-inoculation, with a subset of them undergoing [18F]FDG PET/CT scan performed concurrently, and their results were compared. In addition, ex vivo biodistribution studies were also performed for verifying the semi-quantitative results of the non-invasive PET images. RESULTS: [68Ga]Ga-HX01 significantly outperformed single target probes in the BxPC-3 xenograft model. All blocking and single target groups exhibited significantly descending tumor uptake. The high tumor uptakes were found in BxPC-3, MCF-7, and NOZ subcutaneous tumors (%ID/g > 1.1), while middle uptakes were observed in HCC827, SK-OV-3, HCT-8, and HuH-7 subcutaneous tumor (%ID/g 0.7-1.0). Due to the low background, the tumor-to-muscle and tumor-to-blood ratios of [68Ga]Ga-HX01 were higher than that of [18F]FDG. CONCLUSIONS: [68Ga]Ga-HX01, as a dual target imaging agent, exhibited superior in vivo performance in different subcutaneous and orthotopic mice models of human tumors over [18F]FDG and its respectively mono-receptor targeted agents, which warrants the future clinical translation for tumor imaging.


Gallium Radioisotopes , Positron Emission Tomography Computed Tomography , Female , Humans , Animals , Mice , Fluorodeoxyglucose F18 , Tissue Distribution , Endothelial Cells/metabolism , Cell Line, Tumor , Positron-Emission Tomography/methods , Oligopeptides/metabolism , Integrins/metabolism , Integrin alphaVbeta3/metabolism
5.
Front Oncol ; 12: 884554, 2022.
Article En | MEDLINE | ID: mdl-35664759

Ovarian cancer has the highest mortality rate of gynecologic malignancy. 18F-FDG positron emission tomography (PET) adds an important superiority over traditional anatomic imaging modalities in oncological imaging but has drawbacks including false negative results at the early stage of ovarian cancer, and false positives when inflammatory comorbidities are present. Aminopeptidase N (APN, also known as CD13) and integrin αvß3 are two important targets overexpressed on tumor neo-vessels and frequently on ovarian cancerous cells. In this study, we used subcutaneous and metastatic models of ovarian cancer and muscular inflammation models to identify 68Ga-NGR-RGD, a heterodimeric tracer consisting of NGR and RGD peptides targeting CD13 and integrin αvß3, respectively, and compared it with 18F-FDG. We found that 68Ga-NGR-RGD showed greater contrast in SKOV3 and ES-2 tumors than 18F-FDG. Low accumulation of 68Ga-NGR-RGD but avid uptake of 18F-FDG were observed in inflammatory muscle. In abdominal metastasis models, PET imaging with 68Ga-NGR-RGD allowed for rapid and clear delineation of both peritoneal and liver metastases (3-6 mm), whereas, 18F-FDG could not distinguish the metastasis lesions due to the relatively low metabolic activity in tumors and the interference of intestinal physiological 18F-FDG uptake. Due to the high tumor-targeting efficacy, low inflammatory uptake, and higher tumor-to-background ratios compared to that of 18F-FDG, 68Ga-NGR-RGD presents a promising imaging agent for diagnosis, staging, and follow-up of ovarian tumors.

6.
Mol Imaging Biol ; 24(4): 580-589, 2022 08.
Article En | MEDLINE | ID: mdl-35229260

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal gastrointestinal cancer, and its poor prognosis is highly associated with the lack of an efficient early detection technology. Here, we report that RGD-NGR heterodimer labeled with PET isotope could be applied in PDAC early detection. PROCEDURES: The RGD-NGR tracer was first compared with its corresponding monomeric counterparts via PET imaging studies using mice bearing a subcutaneous BxPC3 tumor. Subsequently, the RGD-NGR tracer was evaluated in autochthonous mouse models with spontaneously developed late stage PanIN lesions (KCER mice) or PDAC (KPC mice) via both PET imaging studies and ex vivo biodistribution studies. Furthermore, a comparison between 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) and the RGD-NGR tracer was conducted via PET imaging of the same KCH mouse bearing spontaneously developed PDAC. H&E staining was performed to confirm the malignant pancreatic tissue in the KCH mouse. Immunofluorescence staining was performed to confirm the expression of integrin αVß3 and CD13. RESULTS: The RGD-NGR tracer exhibited improved in vivo performance as compared with its corresponding monomeric counterparts on the subcutaneous BxPC3 tumor mouse model. Subsequent evaluation in autochthonous mouse models demonstrated its capability to detect both pre-malignant and malignant pancreases. Further comparison with [18F]F-FDG revealed the superiority of the proposed heterodimer in imaging spontaneously developed PDAC. H&E staining confirmed the malignant pancreatic tissue in the KCH mouse, while the expression of both integrin αVß3 and CD13 receptors was demonstrated with immunofluorescence staining. CONCLUSION: The proposed RGD-NGR heterodimer possesses the potential to be applied in the PDAC early detection for high-risk populations.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/diagnostic imaging , Cell Line, Tumor , Early Detection of Cancer , Fluorodeoxyglucose F18 , Integrin alphaVbeta3/metabolism , Mice , Oligopeptides , Pancreatic Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Tissue Distribution , Pancreatic Neoplasms
7.
J Inorg Biochem ; 229: 111719, 2022 04.
Article En | MEDLINE | ID: mdl-35065319

Advances in chelator design are the cornerstone for the development of metals like copper and gallium based biomedical agents and radiopharmaceuticals. To develop optimal chelating ligands, we explored the synthesis and chelating properties of azaheterocycle pendant armed 1,4,7-triazacyclononane (TACN) dimethylcarboxylate derivatives and dimethylphosphonate derivatives. In the complexation kinetics test, dicarboxylate pendant armed TACN derivatives 2,2'-(7-((1H-imidazol-2-yl)methyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-Im), 2,2'-(7-((1-methyl-1H-imidazol-2-yl)methyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-MeIm), and 2,2'-(7-(thiazol-2-ylmethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-Thia) exhibited fast complexation kinetics towards Cu (II) cations, which were comparable to the frequently explored ligand 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). And the diphosphonate pendant armed TACN derivative ((7-(thiazol-2-ylmethyl)-1,4,7-triazonane-1,4-diyl)bis(methylene))bis(phosphonic acid) (NODP-Thia) bound with Ga (III) cations at a much faster rate than NOTA. Density functional theory studies confirmed that the better complexation kinetics and metal chelating efficiency of NODA-Im, NODA-MeIm, NODA-Thia, and NODP-Thia could be ascribed to the lower Gibbs energies of corresponding chelator-metal complexes than NOTA-metal complexes. The kinetic inertness of the Cu (II) complex with NODA-Im, NODA-MeIm, and NODA-Thia was also demonstrated by cyclic voltammetry studies. Subsequently radiolabeling experiment demonstrated that these metal chelators could efficiently labeled with 64Cu or 68Ga in good radiochemical purities. These preliminary findings support NODA-Im, NODA-MeIm, NODA-Thia, and NODP-Thia as promising leading chelating agents for the development of bifunctional Cu2+ and Ga3+ chelators in biomedical applications.


Chelating Agents/chemistry , Copper/chemistry , Gallium/chemistry , Heterocyclic Compounds/chemistry , Chelating Agents/chemical synthesis , Copper Radioisotopes/chemistry , Density Functional Theory , Gallium Radioisotopes/chemistry , Heterocyclic Compounds/chemical synthesis , Kinetics , Ligands , Models, Chemical
8.
Biomed Res Int ; 2021: 6654262, 2021.
Article En | MEDLINE | ID: mdl-34212037

Imaging of CD8 receptors on T-cells by positron emission tomography (PET) has been considered a promising strategy for monitoring the treatment response to immunotherapy. In this study, a trial of imaging CD8 with our newly developed sequential multiple-agent receptor targeting (SMART) technology was conducted. Mice bearing a subcutaneous colorectal CT26 tumor received three times different immunotherapy treatments (PD1 or CTLA4 or combined). On either day 7 or day 14 after the first time treatment, the PET imaging study was performed with sequentially administered TCO-modified anti-CD8 antibody and 64Cu-labeled MeTz-NOTA-RGD. However, no positive response was detected, probably due to (1) inappropriate selection of biomarkers for the SMART strategy, (2) limited TCO modification on the anti-CD8 antibody, and (3) inadequate response of the CT26 tumor to the selected immunotherapies. Therefore, the potential of applying SMART in imaging CD8 was not demonstrated in this study, and further optimization will be necessary before it can be applied in imaging CD8.


CD8 Antigens/metabolism , Immunotherapy/methods , Positron-Emission Tomography/methods , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , Copper Radioisotopes , Heterocyclic Compounds, 1-Ring , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Oligopeptides/chemistry , Sample Size
9.
Adv Ther (Weinh) ; 4(10)2021 Oct.
Article En | MEDLINE | ID: mdl-35309962

PET imaging has become an important diagnostic tool in the era of precise medicine. Various pre-targeting systems have been reported to address limitations associated with traditional immuno-PET. However, the application of these mono-receptor based pre-targeting (MRPT) strategies is limited to non-internalizable antibodies, and the tumor uptake is usually much lower than that in the corresponding immuno-PET. To circumvent these limitations, we develop the first Dual-Receptor Pre-Targeting (DRPT) system through entrapping the tumor-receptor-specific radioligand by the pre-administered antibody. Besides the similar ligation pathway happens in MRPT, incorporation of a tumor-receptor-specific peptide into the radioligand in DRPT enhances both concentration and retention of the radioligand on tumor, promoting its ligation with pre-administered mAb on cell-surface and/or internalized into tumor-cells. In this study, 64Cu based DRPT shows superior performance over corresponding MRPT and immuno-PET using internalizable antibodies. Besides, the compatibility of DRPT with short-lived and generator-produced 68Ga is demonstrated, leveraging its advantage in reducing radio-dose exposure. Furthermore, the feasibility of reducing the amount of the pre-administered antibody is confirmed, indicating the cost saving potential of DRPT. In summary, synergizing advantages of dual-receptor targeting and pre-targeting, we expect that this DRPT strategy can become a breakthrough technology in the field of antibody-based molecular imaging.

10.
Int J Hyperthermia ; 37(1): 308-315, 2020.
Article En | MEDLINE | ID: mdl-32228185

Radiofrequency ablation (RFA) has been clinically used as a minimally invasive procedure for the treatment of many solid tumors. However, the current imaging techniques have some shortages in RFA guidance, especially for the assessment of the margin of ablation. Herein, we developed a novel optical imaging platform to guide RFA utilizing fluorescence resonance energy transfer from a thermally sensitive fluorescent protein conjugated to a near-infrared fluorescent dye. Additionally, attaching receptor-targeting ligands further equipped the system with high specificity to tumors overexpressing the targeted receptor.


Catheter Ablation/methods , Fluorescence , Animals , Disease Models, Animal , Humans , Mice
11.
J Org Chem ; 85(9): 5771-5777, 2020 05 01.
Article En | MEDLINE | ID: mdl-32223160

A novel photo-click-based platform has been developed for rapid screening and affinity optimization of heterobivalent agents. This method allows for the efficient selection of high-affinity dual receptor-targeting agents via streamlining tedious organic synthesis and biological evaluation procedures required by traditional approaches. The high-avidity heterobivalent agents targeting both integrin αvß3 and urokinase-type plasminogen activator receptors have been developed using this photo-click-facilitated screening platform. The affinity screening results were further validated by traditional in vitro and in vivo evaluation techniques, reaffirming the reliability of the method. The convenience, rapidity, universality, and robustness of the screening platform, discussed in this report, can greatly facilitate the development of new heterobivalent agents for research and/or clinical applications.


Receptors, Urokinase Plasminogen Activator , Urokinase-Type Plasminogen Activator , Click Chemistry , Reproducibility of Results
12.
Mol Pharm ; 17(1): 349-358, 2020 01 06.
Article En | MEDLINE | ID: mdl-31829615

Integrin αvß3 and aminopeptidase N (APN, also known as CD13) are two important targets involved in the regulation of angiogenesis, tumor proliferation, invasion, and metastasis. In this study, we developed a heterodimeric tracer consisting of arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) peptides targeting αvß3 and CD13, respectively, for PET imaging of breast cancer. The NGR peptide was first modified with N3-NOtB2 and then conjugated to BCN-PEG4-c(RGDyK) via copper-free click chemistry. The resulting precursor was purified and radiolabeled with gallium-68. Small-animal PET/CT imaging and post-imaging biodistribution studies were performed in mice bearing human breast cancer MCF-7, MDA-MB-231, MDA-MB-468, and MX-1 xenografts and pulmonary metastases models. The expression levels of αvß3 and CD13 in tumors were checked via immunochemical staining. The heterodimeric tracer was successfully synthesized and radiolabeled with gallium-68 at a molar activity of 45-100 MBq/nmol at the end of synthesis. It demonstrated high in vitro and in vivo stability. In static PET/CT imaging studies, the MCF-7 tumor could be clearly visualized and exhibited higher uptake at 30 min post injection of 68Ga-NGR-RGD than that of either 68Ga-RGD or 68Ga-NGR alone. High specificity was shown in blocking studies using Arg-Gly-Asp (RGD) and Asp-Gly-Arg (NGR) peptides. The MCF-7 tumor exhibited the highest uptake of 68Ga-NGR-RGD followed by MDA-MB-231, MDA-MB-468, and MX-1 tumors. This was consistent with their expression levels of CD13 and αvß3 as confirmed by western blot and immunohistochemical staining. Metastatic lesions in the lungs were clearly detectable on 68Ga-NGR-RGD PET/CT imaging in mouse models of pulmonary metastases. 68Ga-NGR-RGD, a CD13 and αvß3 dual-receptor targeting tracer, showed higher binding avidities, targeting efficiency, and longer tumor retention time compared with monomeric 68Ga-NGR and 68Ga-RGD. Its promising in vivo performance makes it an ideal candidate for future clinical translation.


Breast Neoplasms/diagnostic imaging , CD13 Antigens/metabolism , Integrin alphaVbeta3/metabolism , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/administration & dosage , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CD13 Antigens/antagonists & inhibitors , Cell Line, Tumor , Female , Gallium Radioisotopes , Humans , Integrin alphaVbeta3/antagonists & inhibitors , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Nude , Oligopeptides/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
13.
J Biol Inorg Chem ; 25(1): 99-108, 2020 02.
Article En | MEDLINE | ID: mdl-31745667

Malignant melanoma is an aggressive cancer with poor prognosis. Very late antigen-4 (VLA-4) is overexpressed in melanoma and many other tumors, making it an attractive target for developing molecular diagnostic and therapeutic agents. We compared Al18F- and 68Ga-labeled LLP2A peptides for PET imaging of VLA-4 expression in melanoma. The peptidomimetic ligand LLP2A was modified with chelator 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA), and the resulting NOTA-PEG4-LLP2A peptide was then radiolabeled with Al18F or 68Ga. The two labeled peptides were assayed for in vitro and in vivo VLA-4 targeting efficiency. Good Al18F and 68Ga radiolabeling yields were achieved, and the resulting PET tracers showed good serum stability. In the in vivo evaluation of the B16F10 xenograft mouse model, both tracers exhibited high accumulation with good contrast in static PET images. Compared with 68Ga-NOTA-PEG4-LLP2A, Al18F-NOTA-PEG4-LLP2A resulted in relatively higher background, including higher liver uptake (1 h: 20.1 ± 2.6 vs. 15.3 ± 1.7%ID/g, P < 0.05; 2 h: 11.0 ± 1.2 vs. 8.0 ± 0.8%ID/g, P < 0.05) and lower tumor-to-blood ratios (2.5 ± 0.4 vs. 3.3 ± 0.5 at 1 h, P < 0.05; 5.1 ± 0.9 vs. 7.3 ± 0.6 at 2 h, P < 0.01) at some time points. The results obtained from the mice blocked with unlabeled peptides and VLA-4-negative A375 xenografts groups confirmed the high specificity of the developed tracers. Despite the relatively high liver uptake, both Al18F-NOTA-PEG4-LLP2A and 68Ga-NOTA-PEG4-LLP2A exhibited high VLA-4 targeting efficacy with comparable in vivo performance, rendering them promising candidates for imaging tumors that overexpress VLA-4.


Dipeptides/administration & dosage , Fluorine Radioisotopes/administration & dosage , Gallium Radioisotopes/administration & dosage , Heterocyclic Compounds, 1-Ring/administration & dosage , Integrin alpha4beta1/metabolism , Melanoma/diagnostic imaging , Phenylurea Compounds/administration & dosage , Polyethylene Glycols/administration & dosage , Positron-Emission Tomography/methods , Skin Neoplasms/diagnostic imaging , Animals , Humans , Mice , Xenograft Model Antitumor Assays
14.
ACS Omega ; 4(7): 12432-12437, 2019 Jul 31.
Article En | MEDLINE | ID: mdl-31460362

Ubiquitin has been recently identified as a chemokine receptor 4 (CXCR4) natural ligand, offering great potential for positron emission computed tomography (PET) imaging of CXCR4 expression. This study reports the preparation and evaluation of (64Cu)-radiolabeled ubiquitin for CXCR4 imaging. The ubiquitin was first fused with a C-terminal GGCGG sequence, and the resulting recombinant ubiquitin derivative UbCG4 was then functionalized with the trans-cyclooctene (TCO) moiety via thiol-maleimide click reaction, followed by 64Cu-radiolabeling through the TCO/Tz (tetrazine)-based Diels-Alder click reaction. In the prepared in vitro studies, the prepared (64Cu)-UbCG4 showed significantly higher specific uptakes in the 4T1 breast cancer cells compared with the uptakes in the CXCR4-knockdown 4T1 cells. In the in vivo evaluation in the 4T1-xenograft mouse model, (64Cu)-UbCG4 demonstrated a similar tumor uptake but much lower backgrounds compared with 64Cu-labeled AMD3465. These results suggested that (64Cu)-UbCG4 could serve as a potent PET tracer for the noninvasive imaging of CXCR4 expression in tumors.

15.
Abdom Radiol (NY) ; 44(1): 218-226, 2019 01.
Article En | MEDLINE | ID: mdl-30054685

PURPOSE: This study aimed to explore the feasibility of susceptibility-weighted imaging (SWI) for evaluating delayed graft function (DGF) during the early posttransplantation period. METHODS: Sixty-nine recipients who accepted allograft renal transplantation underwent SWI during the second posttransplantation week. Renal allograft function was estimated via the glomerular filtration rate. Recipients with and without DGF were identified. For each transplanted kidney, the presence of abnormal signal intensity lesions (ASILs), excluding benign lesions, on SWI was assessed. Renal allograft function was compared between the recipients with and without ASILs. The correlation between ASILs and renal allograft function was tested by Spearman's rank correlation analysis. RESULTS: Thirty-four recipients were diagnosed with DGF, while 35 recipients showed no DGF. In the DGF group, 16 recipients had low-intensity ASILs, primarily at the corticomedullary junction of transplanted kidneys on SWI, and no ASILs were found in 18 recipients. In the non-DGF group, none of the recipients showed ASILs on SWI. In the DGF group, the renal allograft function among the 16 recipients with low-intensity ASILs was significantly lower than that among the other 18 recipients (8.5 ± 4.2 vs. 19.7 ± 9.7 mL/min, P < 0.001). The presence of low-intensity ASILs on SWI showed a moderate negative correlation with renal allograft function in recipients with DGF (r = - 0.553, P = 0.001). CONCLUSION: SWI can be used to evaluate DGF in the early post-kidney transplantation period.


Delayed Graft Function/diagnostic imaging , Kidney Transplantation , Magnetic Resonance Imaging/methods , Postoperative Cognitive Complications/diagnostic imaging , Adult , Delayed Graft Function/physiopathology , Feasibility Studies , Female , Glomerular Filtration Rate , Humans , Kidney/diagnostic imaging , Kidney/physiopathology , Male , Postoperative Cognitive Complications/physiopathology , Retrospective Studies , Risk Factors
16.
Bioconjug Chem ; 29(10): 3483-3494, 2018 10 17.
Article En | MEDLINE | ID: mdl-30205001

Due to the increasing use of generator-produced radiometal Gallium-68 (68Ga) in positron-emission tomography/computed tomography (PET/CT), reliable bifunctional chelators that can efficiently incorporate 68Ga3+ into biomolecules are highly desirable. In this study, we synthesized two new bifunctional chelators bearing one or two phosphonic acid functional groups, named p-SCN-PhPr-NE2A1P and p-SCN-PhPr-NE2P1A, with the aim of enabling facile production of 68Ga-based radiopharmaceuticals. Both chelators were successfully conjugated to LLP2A-PEG4, a very late antigen-4 (VLA-4) targeting peptidomimetic ligand, to evaluate their application in 68Ga-based PET imaging. NE2P1A-PEG4-LLP2A exhibited the highest 68Ga3+ binding ability with molar activity of 37 MBq/nmol under mild temperature and neutral pH. Excellent serum stability of 68Ga-NE2P1A-PEG4-LLP2A was observed, which was consistent with the result obtained from density functional theory calculation. The in vitro cell study showed that 68Ga-NE2P1A-PEG4-LLP2A had significantly longer retention in B16F10 cells comparing to the reported retention of 64Cu-NE3TA-PEG4-LLP2A, although the uptake was relatively lower. In the biodistribution and micro-PET/CT imaging studies, high tumor uptake and low background were observed after 68Ga-NE2P1A-PEG4-LLP2A was injected into mice bearing B16F10 tumor xenografts, making it a highly promising radiotracer for noninvasive imaging of VLA-4 receptors overexpressed in melanoma.


Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Gallium Radioisotopes/chemistry , Melanoma, Experimental/diagnostic imaging , Phosphorous Acids/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Animals , Heterografts , Integrin alpha4beta1/metabolism , Melanoma, Experimental/metabolism , Mice , Radiopharmaceuticals/pharmacokinetics
17.
Acta Biomater ; 75: 312-322, 2018 07 15.
Article En | MEDLINE | ID: mdl-29885530

Multifunctional nanoplatforms offering simultaneous imaging and therapeutic functions have been recognized as a highly promising strategy for personalized nanomedicine. In this work, we synthesized a farnesylthiosalicylate (FTS, a nontoxic Ras antagonist) based triblock copolymer POEG-b-PVBA-b-PFTS (POVF) composed of a poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic block, a poly(FTS) hydrophobic block, and a poly(4-vinylbenzyl azide) (PVBA) middle block. The POVF polymer itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it could serve as a carrier to effectively encapsulate paclitaxel (PTX) to form stable PTX/POVF mixed micelles with a diameter around 100 nm. Meanwhile, POVF polymer provides the active azide group for incorporating a positron emission tomography (PET) imaging modality via a facile strategy based on metal-free click chemistry. This nanocarrier system could not only be used for co-delivery of PTX and FTS, but also for PET imaging guided drug delivery. In the 4T1.2 tumor bearing mice, PET imaging showed rapid uptake and slow clearance of radiolabeled PTX/POVF nanomicelles in the tumor tissues. In addition, the FTS-based multi-functional nanocarrier was able to inhibit tumor growth effectively, and the co-delivery of PTX by the carrier further improved the therapeutic effect. STATEMENT OF SIGNIFICANCE: Due to the intrinsic heterogeneity of cancer and variability in individual patient response, personalized nanomedicine based on multi-functional carriers that integrate the functionalities of combination therapy and imaging guidance is highly demanded. Here we developed a multi-functional nanocarrier based on triblock copolymer POEG-b-PVBA-b-PFTS (POVF), which could not only be used for co-delivery of anticancer drugs PTX and Ras inhibitor FTS, but also for PET imaging guided drug delivery. The POVF carrier itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it was effective in formulating PTX with high drug loading capacity, which further enhanced the tumor inhibition effect. Meanwhile, we developed a simple and universal approach to incorporate a PET radioisotope (Zr-89 and Cu-64) into the azide-containing PTX/POVF micelles via metal-free click chemistry in aqueous solution. The radiolabeled PTX/POVF micelles exhibited excellent serum stability, rapid tumor uptake and slow clearance, which validated the feasibility of the PET image-guided delivery of PTX/POVF micelles.


Biodegradable Plastics , Contrast Media , Drug Carriers , Mammary Neoplasms, Experimental , Nanoparticles , Paclitaxel , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacokinetics , Biodegradable Plastics/pharmacology , Contrast Media/chemistry , Contrast Media/pharmacokinetics , Contrast Media/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Female , HCT116 Cells , Humans , Mammary Neoplasms, Experimental/diagnostic imaging , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology
18.
Cancer Biother Radiopharm ; 33(2): 74-83, 2018 Mar.
Article En | MEDLINE | ID: mdl-29634417

OBJECTIVE: The goal of this research was to evaluate c(RGDyK) conjugated to phosphonate-based cross-bridged chelators using Cu-free click chemistry in the 4T1 mouse mammary tumor bone metastasis model in comparison with 64Cu-CB-TE2A-c(RGDyK), which previously showed selective binding to integrin αvß3 on osteoclasts. EXPERIMENTAL: Two phosphonate-based cross-bridged chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to c(RGDyK) through bio-orthogonal strain-promoted alkyne-azide cycloaddition. In vitro and in vivo evaluation of the 64Cu-labeled TE1A1P-DBCO-c(RGDyK) (AP-c(RGDyK)), TE1K1P-PEG4-DBCO-c(RGDyK) (KP-c(RGDyK)), and CB-TE2A-c(RGDyK) were compared in the 4T1 mouse model of bone metastasis. The affinities of the unconjugated and chelator-c(RGDyK) analogs for αvß3 integrin were determined using a competitive-binding assay. For in vivo evaluation, BALB/c mice were injected with 1 × 105 4T1/Luc cells in the left ventricle. Formation of metastases was monitored by bioluminescence imaging (BLI) followed by small-animal PET/CT 2 h postinjection of radiotracers. RESULTS: The chelator-peptide conjugates showed similar affinity to integrin αvß3, in the low nM range. PET imaging demonstrated a higher uptake in bones having metastases for all 64Cu-labeled c(RGDyK) analogs compared with bones in nontumor-bearing mice. The correlation between uptake of 64Cu-AP-c(RGDyK) and 64Cu-KP-c(RGDyK) in bones with metastases based on PET/CT imaging, and osteoclast number based on histomorphometry, was improved over the previously investigated 64Cu-CB-TE2A-c(RGDyK). CONCLUSION: These data suggest that the phosphonate chelator conjugates of c(RDGyK) peptides are promising PET tracers suitable for imaging tumor-associated osteoclasts in bone metastases.


Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Chelating Agents/metabolism , Copper Radioisotopes/metabolism , Organophosphonates/metabolism , Positron Emission Tomography Computed Tomography/methods , Humans , Neoplasm Metastasis
19.
Clin Imaging ; 51: 12-22, 2018.
Article En | MEDLINE | ID: mdl-29414519

PURPOSE: To detect fat status and differentiate histotypes of renal masses by using Dixon technique. MATERIALS AND METHODS: This study included 134 solid renal masses. Signal intensity index (SII) and fat fraction (FF) in different histotypes were compared. RESULTS: Only angiomyolipoma (AML), clear cell renal cell carcinoma (RCC), and papillary RCC were confirmed to contain fat. The FF of 16.8% can effectively differentiate AML from clear cell RCC, so did the SII of 9.2% can differentiate clear cell RCC from non-clear cell RCC and rare benign histotypes. CONCLUSION: Dixon technique successfully evaluated the fat status and histotypes of renal masses.


Adipose Tissue , Angiomyolipoma/diagnosis , Carcinoma, Renal Cell/diagnosis , Kidney Neoplasms/diagnosis , Adult , Aged , Angiomyolipoma/pathology , Carcinoma, Renal Cell/pathology , Diagnosis, Differential , Female , Hamartoma/diagnosis , Hamartoma/pathology , Humans , Kidney Neoplasms/pathology , Lipoma/diagnosis , Lipoma/pathology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Sensitivity and Specificity
20.
J Nucl Med ; 59(3): 390-395, 2018 03.
Article En | MEDLINE | ID: mdl-29301927

Molecular imaging is critical to personalized and precision medicine. Although singly targeted imaging probes are making an impact both clinically and preclinically, molecular imaging strategies using bispecific probes have enabled improved visualization of cancer in recent years through synergistic targeting of two ligands. In this Focus on Molecular Imaging review, we outline how peptide-, antibody-, and nanoparticle-based platforms have affected this emerging strategy, providing examples and pointing out areas in which the greatest clinical impact may be realized.


Molecular Imaging/methods , Neoplasms/diagnostic imaging , Animals , Humans , Immunoglobulin Fragments/metabolism , Nanoparticles , Neoplasms/metabolism
...