Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(2): 111483, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223737

RESUMEN

The critical role of AMPA receptor (AMPAR) trafficking in long-term potentiation (LTP) of excitatory synaptic transmission is now well established, but the underlying molecular mechanism is still uncertain. Recent research suggests that PSD-95 captures AMPARs via an interaction with the AMPAR auxiliary subunits-transmembrane AMPAR regulatory proteins (TARPs). To determine if such interaction is a core minimal component of the AMPAR trafficking and LTP mechanism, we engineered artificial binding partners, which individually were biochemically and functionally dead but which, when expressed together, rescue binding and both basal synaptic transmission and LTP. These findings establish the TARP/PSD-95 complex as an essential interaction underlying AMPAR trafficking and LTP.


Asunto(s)
Potenciación a Largo Plazo , Receptores AMPA , Homólogo 4 de la Proteína Discs Large/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
2.
Nat Chem ; 14(7): 831-840, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35637289

RESUMEN

Liquid-liquid phase separation (LLPS) of SynGAP and PSD-95, two abundant proteins that interact in the postsynaptic density (PSD) of neurons, has been implicated in modulating SynGAP PSD enrichment in excitatory synapses. However, the underlying regulatory mechanisms remain enigmatic. Here we report that O-GlcNAcylation of SynGAP acts as a suppressor of LLPS of the SynGAP/PSD-95 complex. We identified multiple O-GlcNAc modification sites for the endogenous SynGAP isolated from rat brain and the recombinantly expressed protein. Protein semisynthesis was used to generate site-specifically O-GlcNAcylated forms of SynGAP, and in vitro and cell-based LLPS assays demonstrated that T1306 O-GlcNAc of SynGAP blocks the interaction with PSD-95, thus inhibiting LLPS. Furthermore, O-GlcNAcylation suppresses SynGAP/PSD-95 LLPS in a dominant-negative manner, enabling sub-stoichiometric O-GlcNAcylation to exert effective regulation. We also showed that O-GlcNAc-dependent LLPS is reversibly regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). These findings demonstrate that OGT- and OGA-catalysed O-GlcNAc cycling may serve as an LLPS-regulating post-translational modification.


Asunto(s)
Acetilglucosamina , Procesamiento Proteico-Postraduccional , Acetilglucosamina/metabolismo , Animales , Neuronas/metabolismo , Ratas
3.
Cell Res ; 31(1): 37-51, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33235361

RESUMEN

Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) is essential for synaptic plasticity and learning by decoding synaptic Ca2+ oscillations. Despite decades of extensive research, new mechanisms underlying CaMKIIα's function in synapses are still being discovered. Here, we discover that Shank3 is a specific binding partner for autoinhibited CaMKIIα. We demonstrate that Shank3 and GluN2B, via combined actions of Ca2+ and phosphatases, reciprocally bind to CaMKIIα. Under basal condition, CaMKIIα is recruited to the Shank3 subcompartment of postsynaptic density (PSD) via phase separation. Rise of Ca2+ concentration induces GluN2B-mediated recruitment of active CaMKIIα and formation of the CaMKIIα/GluN2B/PSD-95 condensates, which are autonomously dispersed upon Ca2+ removal. Protein phosphatases control the Ca2+-dependent shuttling of CaMKIIα between the two PSD subcompartments and PSD condensate formation. Activation of CaMKIIα further enlarges the PSD assembly and induces structural LTP. Thus, Ca2+-induced and phosphatase-checked shuttling of CaMKIIα between distinct PSD nano-domains can regulate phase separation-mediated PSD assembly and synaptic plasticity.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Plasticidad Neuronal/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Unión Proteica , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Asociadas a SAP90-PSD95/metabolismo
4.
Structure ; 28(3): 290-300.e4, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31879129

RESUMEN

Shank1/2/3, major scaffold proteins in excitatory synapses, are frequently mutated in patients with psychiatric disorders. Although the Shank N-terminal domain and ankyrin repeats domain tandem (NTD-ANK) is known to bind to Ras and Rap1, the molecular mechanism underlying and functional significance of the bindings in synapses are unknown. Here, we demonstrate that Shank3 NTD-ANK specifically binds to the guanosine triphosphate (GTP)-bound form of HRas and Rap1. In addition to the canonical site mediated by the Ras-association domain and common to both GTPases, Shank3 contains an unconventional Rap1 binding site formed by NTD and ANK together. Binding of Shank3 to the GTP-loaded Rap1 slows down its GTP hydrolysis by SynGAP. We further show that the interactions between Shank3 and HRas/Rap1 at excitatory synapses are promoted by synaptic activation. Thus, Shank3 may be able to modulate signaling of the Ras family proteins via directly binding to and stabilizing the GTP-bound form of the enzymes.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Estabilidad de Enzimas , Proteínas Activadoras de GTPasa/química , Humanos , Hidrólisis , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Activadoras de ras GTPasa/metabolismo
5.
Neuron ; 104(3): 529-543.e6, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492534

RESUMEN

Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs) modulate AMPAR synaptic trafficking and transmission via disc-large (DLG) subfamily of membrane-associated guanylate kinases (MAGUKs). Despite extensive studies, the molecular mechanism governing specific TARP/MAGUK interaction remains elusive. Using stargazin and PSD-95 as the representatives, we discover that the entire tail of stargazin (Stg_CT) is required for binding to PSD-95. The PDZ binding motif (PBM) and an Arg-rich motif upstream of PBM conserved in TARPs bind to multiple sites on PSD-95, thus resulting in a highly specific and multivalent stargazin/PSD-95 complex. Stargazin in complex with PSD-95 or PSD-95-assembled postsynaptic complexes form highly concentrated and dynamic condensates via phase separation, reminiscent of stargazin/PSD-95-mediated AMPAR synaptic clustering and trapping. Importantly, charge neutralization mutations in TARP_CT Arg-rich motif weakened TARP's condensation with PSD-95 and impaired TARP-mediated AMPAR synaptic transmission in mice hippocampal neurons. The TARP_CT/PSD-95 interaction mode may have implications for understanding clustering of other synaptic transmembrane proteins.


Asunto(s)
Canales de Calcio/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica , Animales , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Densidad Postsináptica/metabolismo , Transporte de Proteínas
6.
Mol Cell ; 73(5): 971-984.e5, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661983

RESUMEN

Both the timing and kinetics of neurotransmitter release depend on the positioning of clustered Ca2+ channels in active zones to docked synaptic vesicles on presynaptic plasma membranes. However, how active zones form is not known. Here, we show that RIM and RIM-BP, via specific multivalent bindings, form dynamic and condensed assemblies through liquid-liquid phase separation. Voltage-gated Ca2+ channels (VGCCs), via C-terminal-tail-mediated direct binding to both RIM and RIM-BP, can be enriched to the RIM and RIM-BP condensates. We further show that RIM and RIM-BP, together with VGCCs, form dense clusters on the supported lipid membrane bilayers via phase separation. Therefore, RIMs and RIM-BPs are plausible organizers of active zones, and the formation of RIM and RIM-BP condensates may cluster VGCCs into nano- or microdomains and position the clustered Ca2+ channels with Ca2+ sensors on docked vesicles for efficient and precise synaptic transmissions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Calcio Tipo N/metabolismo , Proteínas de Unión al GTP/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Terminales Presinápticos/metabolismo , Membranas Sinápticas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sitios de Unión , Canales de Calcio Tipo N/genética , Proteínas de Unión al GTP/genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Solubilidad , Membranas Sinápticas/genética , Transmisión Sináptica
7.
Curr Opin Neurobiol ; 57: 1-8, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30599311

RESUMEN

The postsynaptic density (PSD) is an electron dense, semi-membrane bound compartment that lies beneath postsynaptic membranes. This region is densely packed with thousands of proteins that are involved in extensive interactions. During synaptic plasticity, the PSD undergoes changes in size and composition along with changes in synaptic strength that lead to long term potentiation (LTP) or depression (LTD). It is therefore essential to understand the organization principles underlying PSD assembly and rearrangement. Here, we review exciting new findings from recent in vitro reconstitution studies and propose a hypothesis that liquid-liquid phase separation mediates PSD formation and regulation. We also discuss how the properties of PSD formed via phase separation might contribute to the biological functions observed from decades of researches. Finally, we highlight unanswered questions regarding PSD organization and how in vitro reconstitution systems may help to answer these questions in the coming years.


Asunto(s)
Densidad Postsináptica , Hipocampo , Potenciación a Largo Plazo , Plasticidad Neuronal , Transducción de Señal , Sinapsis
8.
Small GTPases ; 10(4): 296-304, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-28524815

RESUMEN

SynGAP, encoded by SYNGAP1, is a Ras/Rap GTPase activator specifically expressed in the nervous systems. SynGAP is one of the most abundant proteins in the postsynaptic densities (PSDs) of excitatory synapses and acts as a critical synaptic activity brake by tuning down synaptic GTPase activities. Mutations of SYNGAP1 have been frequently linked to brain disorders including intellectual disability, autisms, and seizure. SynGAP has been shown to undergo fast dispersions from synapses in response to stimulations, a strategy that neurons use to control the specific activities of the enzyme within the tiny, semi-open compartments in dendritic spines. However, the mechanism governing the activity-dependent synaptic localization modulations of SynGAP is poorly understood. It has been shown recently that SynGAP α1, via specifically binding to PSD-95, can undergo liquid-liquid phase separation forming membraneless, condensed protein-rich sub-compartments. This phase transition-mediated, PSD-95-dependent synaptic enrichment of SynGAP α1 not only suggests a dynamic anchoring mechanism of the protein within the PSD, but also implies a new model for the PSD formation in living neurons.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Humanos , Extracción Líquido-Líquido , Mutación , Neuronas/metabolismo , Fosforilación , Densidad Postsináptica , Ratas
9.
Cell ; 174(5): 1172-1187.e16, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078712

RESUMEN

Synapses are semi-membraneless, protein-dense, sub-micron chemical reaction compartments responsible for signal processing in each and every neuron. Proper formation and dynamic responses to stimulations of synapses, both during development and in adult, are fundamental to functions of mammalian brains, although the molecular basis governing formation and modulation of compartmentalized synaptic assemblies is unclear. Here, we used a biochemical reconstitution approach to show that, both in solution and on supported membrane bilayers, multivalent interaction networks formed by major excitatory postsynaptic density (PSD) scaffold proteins led to formation of PSD-like assemblies via phase separation. The reconstituted PSD-like assemblies can cluster receptors, selectively concentrate enzymes, promote actin bundle formation, and expel inhibitory postsynaptic proteins. Additionally, the condensed phase PSD assemblies have features that are distinct from those in homogeneous solutions and fit for synaptic functions. Thus, we have built a molecular platform for understanding how neuronal synapses are formed and dynamically regulated.


Asunto(s)
Neurogénesis , Plasticidad Neuronal , Densidad Postsináptica , Sinapsis/fisiología , Animales , Encéfalo/fisiología , Homólogo 4 de la Proteína Discs Large/fisiología , Hipocampo/fisiología , Luz , Ratones , Microscopía Confocal , Neuronas/fisiología , Dispersión de Radiación , Transducción de Señal , Transmisión Sináptica
10.
Biochemistry ; 57(17): 2530-2539, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29648450

RESUMEN

The organization principles underlying non-membrane-bound organelles have started to unravel in the past 10 years. A new biophysical model known as biomolecular condensates has been proposed to explain many aspects of membraneless organelle assembly and regulation. Neurons are extremely complex, and each neuron can contain tens of thousands of synapses, building an extensive neuronal circuit. Intriguingly, neuronal synapses are characterized by specialized compartmentalization, where highly enriched supramolecular complexes are semi-membrane-enclosed into submicrometer-sized signal processing compartments. Recent findings have demonstrated that this postsynaptic density may be driven by phase separation, and an increasing number of studies of membraneless compartments have shed light on the important molecular features shared by these organelles. Here, we discuss the unique morphology and composition of synapses and consider how synaptic assembly might be driven by phase separation. Understanding the molecular behavior of this semi-membrane-bound compartment could ultimately help to explain the mechanistic details underlying synaptic transmission and plasticity, as well as the numerous brain disorders caused by synaptic defects.


Asunto(s)
Encéfalo/fisiología , Neuronas/química , Transición de Fase , Sinapsis/química , Compartimento Celular/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
11.
Nat Commun ; 9(1): 737, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467404

RESUMEN

Uneven distribution and local concentration of protein complexes on distinct membrane cortices is a fundamental property in numerous biological processes, including Drosophila neuroblast (NB) asymmetric cell divisions and cell polarity in general. In NBs, the cell fate determinant Numb forms a basal crescent together with Pon and is segregated into the basal daughter cell to initiate its differentiation. Here we discover that Numb PTB domain, using two distinct binding surfaces, recognizes repeating motifs within Pon in a previously unrecognized mode. The multivalent Numb-Pon interaction leads to high binding specificity and liquid-liquid phase separation of the complex. Perturbations of the Numb/Pon complex phase transition impair the basal localization of Numb and its subsequent suppression of Notch signaling during NB asymmetric divisions. Such phase-transition-mediated protein condensations on distinct membrane cortices may be a general mechanism for various cell polarity regulatory complexes.


Asunto(s)
División Celular Asimétrica , Proteínas Portadoras/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Hormonas Juveniles/fisiología , Neurogénesis , Neuronas/metabolismo , Secuencias de Aminoácidos , Animales , Diferenciación Celular , Membrana Celular/metabolismo , Polaridad Celular , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Dominios Proteicos , Transducción de Señal
12.
Curr Opin Struct Biol ; 48: 6-15, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28917202

RESUMEN

Membrane-associated guanylate kinases (MAGUKs) are a family of scaffold proteins that are enriched in cellular junctions and essential for tissue development and homeostasis. Mutations of MAGUKs are linked to many human diseases including cancers, psychiatric disorders, and intellectual disabilities. MAGUKs share a common PDZ-SH3-GK tandem domain organization at the C-terminal end. In this review, we summarize the mechanistic basis governing target recognition and regulations of this binding by the PDZ-SH3-GK tandem of various MAGUKs. We also discuss recent discoveries showing unique folding features of MAGUK PDZ-SH3-GK tandems that facilitate ligand-induced oligomerization of MAGUKs and phase transition of MAGUK-assembled synaptic signaling complexes.


Asunto(s)
Guanilato-Quinasas/química , Discapacidad Intelectual/metabolismo , Uniones Intercelulares/metabolismo , Neoplasias/metabolismo , Trastornos Psicóticos/metabolismo , Sinapsis/metabolismo , Sitios de Unión , Expresión Génica , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Uniones Intercelulares/ultraestructura , Modelos Moleculares , Mutación , Neoplasias/genética , Neoplasias/patología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Trastornos Psicóticos/genética , Trastornos Psicóticos/patología , Sinapsis/ultraestructura
13.
J Mol Biol ; 430(1): 69-86, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29138001

RESUMEN

Discs large (DLG) MAGUKs are abundantly expressed in glutamatergic synapses, crucial for synaptic transmission, and plasticity by anchoring various postsynaptic components including glutamate receptors, downstream scaffold proteins and signaling enzymes. Different DLG members have shared structures and functions, but also contain unique features. How DLG family proteins function individually and cooperatively is largely unknown. Here, we report that PSD-95 PDZ3 directly couples with SH3-GK tandem in a PDZ ligand binding-dependent manner, and the coupling can promote PSD-95 dimerization and multimerization. Aided by sortase-mediated protein ligation and selectively labeling, we elucidated the PDZ3/SH3-GK conformational coupling mechanism using NMR spectroscopy. We further demonstrated that PSD-93, but not SAP102, can also undergo PDZ3 ligand binding-induced conformational coupling with SH3-GK and form homo-oligomers. Interestingly, PSD-95 and PSD-93 can also form ligand binding-induced hetero-oligomers, suggesting a cooperative assembly mechanism for the mega-N-methyl-d-aspartate receptor synaptic signaling complex. Finally, we provide evidence showing that ligand binding-induced conformational coupling between PDZ and SH3-GK is a common feature for other MAGUKs including CASK and PALS1.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/genética , Guanilato-Quinasas/genética , Dominios PDZ/genética , Dominios Homologos src/genética , Secuencia de Aminoácidos , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Proteínas de la Membrana/genética , Conformación Molecular , Proteínas del Tejido Nervioso/genética , Ratas , Receptores de Glutamato/genética , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica/genética
14.
Cell ; 166(5): 1163-1175.e12, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565345

RESUMEN

Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Plasticidad Neuronal , Densidad Postsináptica/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large , Células HEK293 , Células HeLa , Hipocampo/citología , Hipocampo/embriología , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Ratones , Neuronas/metabolismo , Transición de Fase , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Ratas , Proteínas Activadoras de ras GTPasa/química
15.
Proc Natl Acad Sci U S A ; 113(22): E3081-90, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185935

RESUMEN

Shank and SAPAP (synapse-associated protein 90/postsynaptic density-95-associated protein) are two highly abundant scaffold proteins that directly interact with each other to regulate excitatory synapse development and plasticity. Mutations of SAPAP, but not other reported Shank PDZ domain binders, share a significant overlap on behavioral abnormalities with the mutations of Shank both in patients and in animal models. The molecular mechanism governing the exquisite specificity of the Shank/SAPAP interaction is not clear, however. Here we report that a sequence preceding the canonical PDZ domain of Shank, together with the elongated PDZ BC loop, form another binding site for a sequence upstream of the SAPAP PDZ-binding motif, leading to a several hundred-fold increase in the affinity of the Shank/SAPAP interaction. We provide evidence that the specific interaction afforded by this newly identified site is required for Shank synaptic targeting and the Shank-induced synaptic activity increase. Our study provides a molecular explanation of how Shank and SAPAP dosage changes due to their gene copy number variations can contribute to different psychiatric disorders.


Asunto(s)
Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Dominios PDZ/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Variaciones en el Número de Copia de ADN , Femenino , Hipocampo/citología , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Unión Proteica , Conformación Proteica , Proteínas Asociadas a SAP90-PSD95 , Sinapsis/fisiología
16.
Neuron ; 89(1): 147-62, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26687841

RESUMEN

Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. However, it is not clear how different mutations of the same gene contribute to different disorders. We characterized two lines of mutant mice with Shank3 mutations linked to ASD and schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with the ASD-linked InsG3680 mutation manifest striatal synaptic transmission defects before weaning age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, synaptic, and circuit levels in mice, which may inform exploration of these relationships in human patients.


Asunto(s)
Trastorno del Espectro Autista/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Esquizofrenia/genética , Conducta Social , Transmisión Sináptica/genética , Envejecimiento , Animales , Trastorno del Espectro Autista/metabolismo , Conducta Animal , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ratones Transgénicos , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/metabolismo
17.
Neuron ; 85(1): 173-189, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25569349

RESUMEN

SynGAP is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. Previous studies have shown that CaMKII and the RAS-ERK pathway are critical for several forms of synaptic plasticity including LTP. NMDA receptor-dependent calcium influx has been shown to regulate the RAS-ERK pathway and downstream events that result in AMPA receptor synaptic accumulation, spine enlargement, and synaptic strengthening during LTP. However, the cellular mechanisms whereby calcium influx and CaMKII control Ras activity remain elusive. Using live-imaging techniques, we have found that SynGAP is rapidly dispersed from spines upon LTP induction in hippocampal neurons, and this dispersion depends on phosphorylation of SynGAP by CaMKII. Moreover, the degree of acute dispersion predicts the maintenance of spine enlargement. Thus, the synaptic dispersion of SynGAP by CaMKII phosphorylation during LTP represents a key signaling component that transduces CaMKII activity to small G protein-mediated spine enlargement, AMPA receptor synaptic incorporation, and synaptic potentiation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/metabolismo , Espinas Dendríticas/fisiología , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo , Sistema de Señalización de MAP Quinasas , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/fisiología , Fosforilación , Ratas , Transducción de Señal , Proteínas ras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...