Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28724, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601695

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a widely prevalent disease with significant mortality and disability rates and has become the third leading cause of death globally. Patients with acute exacerbation of COPD (AECOPD) often substantially suffer deterioration and death. Therefore, COPD patients deserve special consideration regarding treatment in this fragile population for pre-clinical health management. Based on the above, this paper proposes an AECOPD prediction model based on the Auto-Metric Graph Neural Network (AMGNN) using inspiratory and expiratory chest low-dose CT images. This study was approved by the ethics committee in the First Affiliated Hospital of Guangzhou Medical University. Subsequently, 202 COPD patients with inspiratory and expiratory chest CT Images and their annual number of AECOPD were collected after the exclusion. First, the inspiratory and expiratory lung parenchyma images of the 202 COPD patients are extracted using a trained ResU-Net. Then, inspiratory and expiratory lung Radiomics and CNN features are extracted from the 202 inspiratory and expiratory lung parenchyma images by Pyradiomics and pre-trained Med3D (a heterogeneous 3D network), respectively. Last, Radiomics and CNN features are combined and then further selected by the Lasso algorithm and generalized linear model for determining node features and risk factors of AMGNN, and then the AECOPD prediction model is established. Compared to related models, the proposed model performs best, achieving an accuracy of 0.944, precision of 0.950, F1-score of 0.944, ad area under the curve of 0.965. Therefore, it is concluded that our model may become an effective tool for AECOPD prediction.

2.
Med Biol Eng Comput ; 62(6): 1733-1749, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38363487

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a common lung disease that can lead to restricted airflow and respiratory problems, causing a significant health, economic, and social burden. Detecting the COPD stage can provide a timely warning for prompt intervention in COPD patients. However, existing methods based on inspiratory (IN) and expiratory (EX) chest CT images are not sufficiently accurate and efficient in COPD stage detection. The lung region images are autonomously segmented from IN and EX chest CT images to extract the 1 , 781 × 2 lung radiomics and 13 , 824 × 2 3D CNN features. Furthermore, a strategy for concatenating and selecting features was employed in COPD stage detection based on radiomics and 3D CNN features. Finally, we combine all the radiomics, 3D CNN features, and factor risks (age, gender, and smoking history) to detect the COPD stage based on the Auto-Metric Graph Neural Network (AMGNN). The AMGNN with radiomics and 3D CNN features achieves the best performance at 89.7 % of accuracy, 90.9 % of precision, 89.5 % of F1-score, and 95.8 % of AUC compared to six classic machine learning (ML) classifiers. Our proposed approach demonstrates high accuracy in detecting the stage of COPD using both IN and EX chest CT images. This method can potentially establish an efficient diagnostic tool for patients with COPD. Additionally, we have identified radiomics and 3D CNN as more appropriate biomarkers than Parametric Response Mapping (PRM). Moreover, our findings indicate that expiration yields better results than inspiration in detecting the stage of COPD.


Asunto(s)
Redes Neurales de la Computación , Enfermedad Pulmonar Obstructiva Crónica , Tomografía Computarizada por Rayos X , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Inhalación/fisiología , Espiración/fisiología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Aprendizaje Automático
3.
Stud Health Technol Inform ; 308: 146-154, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38007736

RESUMEN

Chronic obstructive pulmonary disease (COPD) is closely related to the right ventricle and lung lobes. This study focuses on the segmentation of the right ventricle and lung lobes. We conducted experiments using the MMWHS and our lung lobe datasets and evaluated the segmentation using different training models. We observed that the multi-objective segmentation approach has advantages over single-objective segmentation in segmenting the right ventricle and lung lobes. For the segmentation of the right ventricle, the multi-objective segmentation approach yielded an improvement of 2.0% in the Dice coefficient and 2.5% in the Jaccard index compared to single-objective segmentation. For the segmentation of five lung lobes, the multi-objective segmentation outperformed the single-objective segmentation with Dice coefficient improvements of 1.4%, 1.0%, 1.5%, 0.7%, and 1.3%, respectively.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Radiografía , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Healthc Eng ; 2023: 3715603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953910

RESUMEN

Computed tomography (CT) has been regarded as the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Therefore, chest CT images should provide more information for COPD diagnosis, such as COPD stage classification. This paper proposes a features combination strategy by concatenating three-dimension (3D) CNN features and lung radiomics features for COPD stage classification based on the multi-layer perceptron (MLP) classifier. First, 465 sets of chest HRCT images are automatically segmented by a trained ResU-Net, obtaining the lung images with the Hounsfield unit. Second, the 3D CNN features are extracted from the lung region images based on a truncated transfer learning strategy. Then, the lung radiomics features are extracted from the lung region images by PyRadiomics. Third, the MLP classifier with the best classification performance is determined by the 3D CNN features and the lung radiomics features. Finally, the proposed combined feature vector is used to improve the MLP classifier's performance. The results show that compared with CNN models and other ML classifiers, the MLP classifier with the best classification performance is determined. The MLP classifier with the proposed combined feature vector has achieved accuracy, mean precision, mean recall, mean F1-score, and AUC of 0.879, 0.879, 0.879, 0.875, and 0.971, respectively. Compared to the MLP classifier with the 3D CNN features selected by Lasso, our method based on the MLP classifier has improved the classification performance by 5.8% (accuracy), 5.3% (mean precision), 5.8% (mean recall), 5.4% (mean F1-score), and 2.5% (AUC). Compared to the MLP classifier with lung radiomics features selected by Lasso, our method based on the MLP classifier has improved the classification performance by 5.0% (accuracy), 5.1% (mean precision), 5.0% (mean recall), 5.1% (mean F1-score), and 2.1% (AUC). Therefore, it is concluded that our method is effective in improving the classification performance for COPD stage classification.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Diagnóstico Diferencial
5.
Diagnostics (Basel) ; 12(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36291964

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a preventable, treatable, progressive chronic disease characterized by persistent airflow limitation. Patients with COPD deserve special consideration regarding treatment in this fragile population for preclinical health management. Therefore, this paper proposes a novel lung radiomics combination vector generated by a generalized linear model (GLM) and Lasso algorithm for COPD stage classification based on an auto-metric graph neural network (AMGNN) with a meta-learning strategy. Firstly, the parenchyma images were segmented from chest high-resolution computed tomography (HRCT) images by ResU-Net. Second, lung radiomics features are extracted from the parenchyma images by PyRadiomics. Third, a novel lung radiomics combination vector (3 + 106) is constructed by the GLM and Lasso algorithm for determining the radiomics risk factors (K = 3) and radiomics node features (d = 106). Last, the COPD stage is classified based on the AMGNN. The results show that compared with the convolutional neural networks and machine learning models, the AMGNN based on constructed novel lung radiomics combination vector performs best, achieving an accuracy of 0.943, precision of 0.946, recall of 0.943, F1-score of 0.943, and ACU of 0.984. Furthermore, it is found that our method is effective for COPD stage classification.

6.
Math Biosci Eng ; 19(8): 7826-7855, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35801446

RESUMEN

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/diagnóstico por imagen , Aprendizaje Automático , Redes Neurales de la Computación , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Tomografía Computarizada por Rayos X
7.
Front Med (Lausanne) ; 9: 845286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530043

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD), a preventable lung disease, has the highest prevalence in the elderly and deserves special consideration regarding earlier warnings in this fragile population. The impact of age on COPD is well known, but the COPD risk of the aging process in the lungs remains unclear. Therefore, it is necessary to understand the COPD risk of the aging process in the lungs, providing an early COPD risk decision for adults. Methods: COPD risk is evaluated for adults to make an early COPD risk decision from the perspective of lung radiomics features. First, the subjects are divided into four groups according to the COPD stages. Their ages are divided into eight equal age intervals in each group. Second, four survival Cox models are established based on the lung radiomics features to evaluate the risk probability from COPD stage 0 to suffering COPD and COPD stages. Finally, four risk ranks are defined by equally dividing the COPD risk probability from 0 to 1. Subsequently, the COPD risk at different stages is evaluated with varying age intervals to provide an early COPD risk decision. Results: The evaluation metrics area under the curve (AUC)/C index of four survival Cox models are 0.87/0.94, 0.84/0.83, 0.94/0.89, and 0.97/0.86, respectively, showing the effectiveness of the models. The risk rank levels up every 5 years for the subjects who had suffered COPD after 60. For the subjects with COPD stage 0, the risk rank of suffering COPD stage I levels up every 5 years after the age of 65 years, and the risk rank of suffering COPD stages II and III & IV levels up every 5 years after the age of 70 years. Conclusion: Once the age is above 60 years, the patients with COPD need to take action to prevent the progress and deterioration of COPD. Once the age is above 65 years, the patients with COPD stage 0 need to take precautions against COPD.

8.
Front Med (Lausanne) ; 9: 980950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619622

RESUMEN

Introduction: Because of persistent airflow limitation in chronic obstructive pulmonary disease (COPD), patients with COPD often have complications of dyspnea. However, as a leading symptom of COPD, dyspnea in COPD deserves special consideration regarding treatment in this fragile population for pre-clinical health management in COPD. Methods: Based on the above, this paper proposes a multi-modal data combination strategy by combining the local and global features for dyspnea identification in COPD based on the multi-layer perceptron (MLP) classifier. Methods: First, lung region images are automatically segmented from chest HRCT images for extracting the original 1,316 lung radiomics (OLR, 1,316) and 13,824 3D CNN features (O3C, 13,824). Second, the local features, including five selected pulmonary function test (PFT) parameters (SLF, 5), 28 selected lung radiomics (SLR, 28), and 22 selected 3D CNN features (S3C, 22), are respectively selected from the original 11 PFT parameters (OLF, 11), 1,316 OLR, and 13,824 O3C by the least absolute shrinkage and selection operator (Lasso) algorithm. Meantime, the global features, including two fused PFT parameters (FLF, 2), six fused lung radiomics (FLR, 6), and 34 fused 3D CNN features (F3C, 34), are respectively fused by 11 OLF, 1,316 OLR, and 13,824 O3C using the principal component analysis (PCA) algorithm. Finally, we combine all the local and global features (SLF + FLF + SLR + FLR + S3C + F3C, 5+ 2 + 28 + 6 + 22 + 34) for dyspnea identification in COPD based on the MLP classifier. Results: Our proposed method comprehensively improves classification performance. The MLP classifier with all the local and global features achieves the best classification performance at 87.7% of accuracy, 87.7% of precision, 87.7% of recall, 87.7% of F1-scorel, and 89.3% of AUC, respectively. Discussion: Compared with single-modal data, the proposed strategy effectively improves the classification performance for dyspnea identification in COPD, providing an objective and effective tool for COPD management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...