Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Andrology ; 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38127116

BACKGROUND: Infection and inflammation of the genital tract are major potentially treatable factors contributing to male infertility. The profile of small non-coding RNA (sncRNAs) in spermatozoa can be altered by environmental exposures and inflammatory conditions. OBJECTIVES: Experimental autoimmune epididymo-orchitis (EAEO) is a well-established model of autoimmune-induced chronic testicular and epididymal inflammation. This model investigates the effect of chronic inflammation on sperm sncRNA profiles and offspring phenotypes. MATERIALS AND METHODS: Regarding the EAEO model, mice were immunized with testis homogenates thrice. Subsequently, flow cytometry and histological analyses were conducted on EAEO mice. Next-generation sequencing was used to profile small RNA of spermatozoa from the caput, corpus, and cauda epididymis. We performed a comprehensive integrative analysis of sperm sncRNAs and chronic epididymitis and identified their molecular signatures. The metabolic functions of the first-generation (F1) offspring were evaluated using a glucose tolerance test (GTT). RESULTS: Body weight and metabolic function were significantly altered in F1 offspring from EAEO sperm donors. The analysis of cauda sperm sncRNA profiles revealed that the proportions of miRNAs and tsRNAs increased and decreased, respectively, after autoimmunization. Three differentially expressed miRNAs and seven differentially expressed tsRNAs were significantly correlated with F1 metabolic dysfunction. The expression patterns of miRNAs and tsRNAs in mice partially overlapped with those observed in the spermatozoa from human patients with chronic epididymitis. DISCUSSION AND CONCLUSIONS: We revealed that autoimmune epididymo-orchitis alters sncRNA profiles in mouse spermatozoa. Offspring from mice with autoimmune orchitis develop metabolic disorders. A comprehensive analysis of human and mouse inflammation data revealed an association between alterations in the miRNA and tsRNA profiles of epididymal spermatozoa and offspring phenotypes.

2.
Sci Adv ; 9(44): eadi4777, 2023 11 03.
Article En | MEDLINE | ID: mdl-37922358

Early-onset preeclampsia (EOPE) is a severe pregnancy complication associated with defective trophoblast differentiation and functions at implantation, but manifestation of its phenotypes is in late pregnancy. There is no reliable method for early prediction and treatment of EOPE. Adrenomedullin (ADM) is an abundant placental peptide in early pregnancy. Integrated single-cell sequencing and spatial transcriptomics confirm a high ADM expression in the human villous cytotrophoblast and syncytiotrophoblast. The levels of ADM in chorionic villi and serum were lower in first-trimester pregnant women who later developed EOPE than those with normotensive pregnancy. ADM stimulates differentiation of trophoblast stem cells and trophoblast organoids in vitro. In pregnant mice, placenta-specific ADM suppression led to EOPE-like phenotypes. The EOPE-like phenotypes in a mouse PE model were reduced by a placenta-specific nanoparticle-based forced expression of ADM. Our study reveals the roles of trophoblastic ADM in placental development, EOPE pathogenesis, and its potential clinical uses.


Pre-Eclampsia , Pregnancy , Female , Mice , Humans , Animals , Pre-Eclampsia/therapy , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Adrenomedullin/metabolism , Placenta/metabolism , Cell Differentiation
3.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article En | MEDLINE | ID: mdl-37175545

Epididymitis is an epididymal inflammation that may lead to male infertility. Dendritic cells (DCs) and myeloid differentiation primary response gene 88 (Myd88) were associated with epididymitis in rodents. However, the functions of Myd88 on epididymal DCs remain unclear. This study investigated the role of Myd88 in DCs for epididymitis. The Myd88 signaling pathway, phenotypes of DC subsets, and cytokines were investigated in lipopolysaccharide (LPS)-induced epididymitis in mice. CRISPR-Cas9 was used to knockout Myd88 in bone-marrow-derived dendritic cells (BMDCs) and immortalized mouse epididymal (DC2) cell line. In the vivo experiments, levels of the proinflammatory cytokines IL-1α, IL-6, IL-17A, TNF-α, IL-1ß, MCP-1, and GM-CSF, mRNA for MyD88 related genes, and the percentages of monocyte-derived DCs (Mo-DCs) were significantly elevated in mice with epididymitis. In the vitro experiments, LPS significantly promoted the apoptosis of BMDCs. In addition, the concentration of inflammatory cytokines in BMDCs and DC2s were increased in the LPS group, while decreasing after the knockout of Myd88. These findings indicate that Myd88 on DCs is involved in the inflammation of epididymitis in mice, which may be a potential target for better strategies regarding the treatment of immunological male infertility.


Epididymitis , Humans , Male , Animals , Mice , Epididymitis/metabolism , Lipopolysaccharides/pharmacology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Bone Marrow/metabolism , Dendritic Cells , Signal Transduction , Cytokines/metabolism , Inflammation/metabolism , Mice, Inbred C57BL
4.
Am J Reprod Immunol ; 90(1): e13708, 2023 07.
Article En | MEDLINE | ID: mdl-37095737

PROBLEM: The phenotypes and functions of B and CD4+ T-helper cell subsets during chronic inflammation of the endometria remain largely unexplored. This study aimed to investigate the characteristics and functions of follicular helper T (Tfh) cells to understand the pathological mechanisms of chronic endometritis (CE). METHOD OF STUDY: Eighty patients who underwent hysteroscopic and histopathological examinations for CE were divided into three groups-those with positive results for hysteroscopy and CD138 staining (DP), negative results for hysteroscopy but positive CD138 staining (SP), and negative results for hysteroscopy and CD138 staining (DN). The phenotypes of B cells and CD4+ T-cell subsets were analyzed using flow cytometry. RESULTS: CD38+ and CD138+ cells were mainly expressed in the non-leukocyte population of the endometria, and the endometrial CD19+ CD138+ B cells were fewer than the CD3+ CD138+ T cells. The percentage of Tfh cells increased with chronic inflammation in the endometria. Additionally, the elevated percentage of Tfh cells correlated with the number of miscarriages. CONCLUSIONS: CD4+ T cells, particularly Tfh cells, may be critical in chronic endometrial inflammation and affect its microenvironment, thereby regulating endometrial receptivity, compared to B cells.


Pregnancy Outcome , T-Lymphocytes, Helper-Inducer , Humans , Pregnancy , Female , B-Lymphocytes , Endometrium , Inflammation
5.
Elife ; 122023 01 19.
Article En | MEDLINE | ID: mdl-36655976

A defining feature of successful vaccination is the ability to induce long-lived antigen-specific memory cells. T follicular helper (Tfh) cells specialize in providing help to B cells in mounting protective humoral immunity in infection and after vaccination. Memory Tfh cells that retain the CXCR5 expression can confer protection through enhancing humoral response upon antigen re-exposure but how they are maintained is poorly understood. CXCR5+ memory Tfh cells in human blood are divided into Tfh1, Tfh2, and Tfh17 cells by the expression of chemokine receptors CXCR3 and CCR6 associated with Th1 and Th17, respectively. Here, we developed a new method to induce Tfh1, Tfh2, and Tfh17-like (iTfh1, iTfh2, and iTfh17) mouse cells in vitro. Although all three iTfh subsets efficiently support antibody responses in recipient mice with immediate immunization, iTfh17 cells are superior to iTfh1 and iTfh2 cells in supporting antibody response to a later immunization after extended resting in vivo to mimic memory maintenance. Notably, the counterpart human Tfh17 cells are selectively enriched in CCR7+ central memory Tfh cells with survival and proliferative advantages. Furthermore, the analysis of multiple human cohorts that received different vaccines for HBV, influenza virus, tetanus toxin or measles revealed that vaccine-specific Tfh17 cells outcompete Tfh1 or Tfh2 cells for the persistence in memory phase. Therefore, the complementary mouse and human results showing the advantage of Tfh17 cells in maintenance and memory function supports the notion that Tfh17-induced immunization might be preferable in vaccine development to confer long-term protection.


Immunologic Memory , T Follicular Helper Cells , Humans , Animals , Mice , Th17 Cells/metabolism , B-Lymphocytes , T-Lymphocytes, Helper-Inducer
6.
Andrology ; 11(4): 770-782, 2023 05.
Article En | MEDLINE | ID: mdl-36417503

BACKGROUND: RNA harbored by mammalian sperm is increasingly considered to be an additional source of paternal hereditary information, beyond DNA. Recent studies have demonstrated the role of sperm small noncoding RNAs (sncRNAs) in modulating early embryonic development and offspring phenotype. The biogenesis of the sperm sRNA payload of mammalian sperm has been explored in many studies. AIMS: To summarize the possible mechanisms underpinning sperm sncRNAs regulating embryonic development and offspring phenotypes. MATERIALS AND METHODS: PubMed database (papers published from 2002 to 2022) was searched for studies reporting the impact of sperm sncRNAs on early embryonic development and offspring phenotype. RESULTS: The sncRNAs categories and source (such as tRNA-derived small RNAs, ribosomal RNA-derived small RNAs, microRNAs, and PIWI-interacting RNAs), and RNA modification upon different types of environmental exposure or by paternally-acquired factors were summarized. The potential mechanisms whereby the modifications of sperm sncRNAs modulate embryonic development and offspring phenotype under normal and pathological conditions (such as obesity, altered glucose metabolism, and psychological stress) were discussed. DISCUSSION AND CONCLUSION: Sperm sncRNAs modulate embryo development and offspring phenotype, and the resulting modifications may be transgenerationally inherited.


MicroRNAs , RNA, Small Untranslated , Pregnancy , Animals , Female , Male , Semen , Spermatozoa/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , RNA, Small Untranslated/genetics , Embryonic Development/genetics , Mammals/genetics
7.
Front Immunol ; 13: 883803, 2022.
Article En | MEDLINE | ID: mdl-35634321

Chronic epididymitis (CE) refers to a long-lasting inflammatory condition of the epididymis, which is considered the most common site of intrascrotal inflammation and an important aetiological factor of male infertility. Recent studies demonstrate that small RNAs secreted from epididymal epithelium modulate embryo development and offspring phenotypes via sperm transmission, and the resulting modifications may lead to transgenerational inheritance. However, to date, the genome-wide analysis of small RNA together with the transcriptomic expression profiles of human epididymis and CE is still lacking. In this study, we facilitated next-generation sequencing and bioinformatics to comprehensively analyze the small RNA and mRNA in an integrative way and identified signatures associated with CE. Both of the small RNA and mRNA expression data demonstrated relatively larger molecular differences among the segmental region of the epididymides, including caput, corpus, and cauda, than that of the inflammatory conditions. By comparing the inflamed caputs to the controls, a total of 1727 genes (1220 upregulated and 507 downregulated; 42 most significant genes, adjusted P <0.05) and 34 miRNAs (23 upregulated and 11 downregulated) were identified as differentially expressed. In silico functional enrichment analysis showed their roles in regulating different biological activities, including leukocyte chemotaxis, extracellular milieu reconstruction, ion channel and transporter-related processes, and nervous system development. Integrative analysis of miRNA and mRNA identified a regulatory network consisting of 22 miRNAs and 31 genes (miRNA-mRNA) which are strong candidates for CE. In addition, analysis about other species of small RNA, including (miRNA), piwi-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), Y RNA, and rsRNA identified the distinct expression pattern of tsRNA in CE. In summary, our study performed small RNA and miRNA profiling and integrative analysis in human CE. The findings will help to understand the role of miRNA-mRNA in the pathogenesis of CE and provide molecular candidates for the development of potential biomarkers for human CE.


Epididymitis , MicroRNAs , Epididymitis/genetics , Gene Expression Profiling , Humans , Male , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
9.
Clin Transl Immunology ; 10(9): e1338, 2021.
Article En | MEDLINE | ID: mdl-34584694

OBJECTIVE: The benefit of Se supplementation in rheumatoid arthritis (RA) has been tested in clinical trials, but results remain inconclusive. The objective of this study was to specifically investigate the potential benefit of supranutritional Se by examining human samples from an area with supranutritional Se intake and testing a mouse model of RA. METHODS: Peripheral blood mononuclear cells (PBMCs) from RA patients (N = 57) and healthy controls (HC, N = 71) from an area of supranutritional Se intake (Enshi, Hubei, China) were analysed by flow cytometry. Serum cytokine and Se levels were measured by cytometric beads array (CBA) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. With sufficient or supranutritional selenium intake, mice were induced with collagen-induced arthritis (CIA) and examined for disease activity and immunopathology. The influence of Se supplementation in the generation of RANKL-expressing osteoclastogenic CD4+ T cells was investigated by in vitro assays. RESULTS: In Enshi city, HC showed the above-normal concentrations of serum Se concentrations while RA patients were enriched in the normal range (70-150 ng mL-1) or below. RA patients with higher Se levels demonstrated milder disease and lower levels of C-reactive protein, IL-6, RANKL and Th17 cells. In the mouse CIA model, supranutritional Se supplementation delayed disease onset, ameliorated joint pathology and reduced CD4+CD44+RANKL+ T cells. Se supplementation could suppress RANKL expression in cultured mouse Th17 cells. CONCLUSION: Supranutritional Se suppresses RANKL-expressing osteoclastogenic CD4+ T cells and could be beneficial to RA, which warrants formal testing in randomised clinical trials.

10.
Nat Immunol ; 22(9): 1127-1139, 2021 09.
Article En | MEDLINE | ID: mdl-34413521

Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of TFH cell survival remains unclear. Here we report that TFH cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for TFH cell survival. The deletion of GPX4 in T cells selectively abrogated TFH cells and germinal center responses in immunized mice. Selenium supplementation enhanced GPX4 expression in T cells, increased TFH cell numbers and promoted antibody responses in immunized mice and young adults after influenza vaccination. Our findings reveal the central role of the selenium-GPX4-ferroptosis axis in regulating TFH homeostasis, which can be targeted to enhance TFH cell function in infection and following vaccination.


Ferroptosis/physiology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Selenium/pharmacology , T Follicular Helper Cells/physiology , Adolescent , Adult , Animals , Cell Survival/immunology , Child , Female , Germinal Center/cytology , Germinal Center/immunology , Homeostasis/drug effects , Homeostasis/genetics , Humans , Immunity, Humoral/immunology , Influenza Vaccines/immunology , Lipid Peroxidation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/physiology , Ovalbumin , T Follicular Helper Cells/immunology , Vaccination , Young Adult
11.
Clin Transl Immunology ; 10(6): e1293, 2021.
Article En | MEDLINE | ID: mdl-34094549

OBJECTIVES: Low-dose interleukin-2 (IL-2) has shown promising clinical benefits in the treatment of systemic lupus erythematosus (SLE), but how this therapy alleviates pathogenic humoral immunity remains not well understood. The dilemma is that IL-2 can suppress both follicular helper and regulatory T (Tfh and Tfr) cells, which counteract each other in regulating autoantibody production. METHODS: Female NZB/W F1 mice received recombinant human IL-2 (3 × 104 IU/dose) in three treatment regimens: (1) short, daily for 7 days; (2) medium, daily for 14 days, and (3) long, every second day for 28 days. Tfh (Foxp3-CXCR5+Bcl6+), Tfr (Foxp3+CXCR5+Bcl6+), germinal centre (GC, B220+GL-7+Fas+) and antibody-secreting cell (ASC, B220-CD138+TACI+) were analysed by flow cytometry. Serum anti-dsDNA level was determined by ELISA. Kidney pathology was evaluated by H&E and immunofluorescence staining. Circulating Tfh and Tfr cells in SLE patients treated with low-dose IL-2 from a previous clinical trial (NCT02084238) was analysed. RESULTS: Low-dose IL-2 treatment consistently increased Tfr/Tfh ratio in mice and SLE patients, because of a stronger suppression on Tfh cells than Tfr cells. Three treatment regimens revealed distinct immunological features. Tfh suppression was observed in all regimens, but Tfr suppression and GC reduction were recorded in just medium and long regimens. Only the long treatment regimen resulted in inhibited ASC differentiation in spleen, which was accompanied by reduced anti-dsDNA titres and ameliorated kidney pathology. CONCLUSION: Low-dose IL-2 therapy increases the Tfr/Tfh ratio, and a less frequent and prolonged treatment can alleviate pathogenic humoral immunity and improve renal function.

12.
Nat Commun ; 12(1): 3073, 2021 05 24.
Article En | MEDLINE | ID: mdl-34031386

Follicular helper T (TFH) cells control antibody responses by supporting antibody affinity maturation and memory formation. Inadequate TFH function has been found in individuals with ineffective responses to vaccines, but the mechanism underlying TFH regulation in vaccination is not understood. Here, we report that lower serum levels of the metabolic hormone leptin associate with reduced vaccine responses to influenza or hepatitis B virus vaccines in healthy populations. Leptin promotes mouse and human TFH differentiation and IL-21 production via STAT3 and mTOR pathways. Leptin receptor deficiency impairs TFH generation and antibody responses in immunisation and infection. Similarly, leptin deficiency induced by fasting reduces influenza vaccination-mediated protection for the subsequent infection challenge, which is mostly rescued by leptin replacement. Our results identify leptin as a regulator of TFH cell differentiation and function and indicate low levels of leptin as a risk factor for vaccine failure.


Antibody Formation/immunology , Influenza Vaccines/immunology , Leptin/metabolism , Animals , Antibodies, Viral/immunology , Cell Differentiation , Female , Homeostasis , Humans , Immunization , Influenza, Human/prevention & control , Leptin/deficiency , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Vaccination/methods
13.
Int J Mol Sci ; 22(1)2020 Dec 23.
Article En | MEDLINE | ID: mdl-33374605

The immune privilege of the testes is necessary to prevent immune attacks to gamete-specific antigens and paternal major histocompatibility complex (MHC) antigens, allowing for normal spermatogenesis. However, infection and inflammation of the male genital tract can break the immune tolerance and represent a significant cause of male infertility. Different T cell subsets have been identified in mammalian testes, which may be involved in the maintenance of immune tolerance and pathogenic immune responses in testicular infection and inflammation. We reviewed the evidence in the published literature on different T subtypes (regulatory T cells, helper T cells, cytotoxic T cells, γδ T cells, and natural killer T cells) in human and animal testes that support their regulatory roles in infertility and the orchitis pathology. While many in vitro studies have indicated the regulation potential of functional T cell subsets and their possible interaction with Sertoli cells, Leydig cells, and spermatogenesis, both under physiological and pathological processes, there have been no in situ studies to date. Nevertheless, the normal distribution and function of T cell subsets are essential for the immune privilege of the testes and intact spermatogenesis, and T cell-mediated immune response drives testicular inflammation. The distinct function of different T cell subsets in testicular homeostasis and the orchitis pathology suggests a considerable potential of targeting specific T cell subsets for therapies targeting chronic orchitis and immune infertility.


Immunity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Testis/immunology , Testis/metabolism , Animals , Autoimmunity , Biomarkers , Disease Management , Disease Susceptibility , Homeostasis , Humans , Immunomodulation , Leydig Cells/immunology , Leydig Cells/metabolism , Male , Sertoli Cells/immunology , Sertoli Cells/metabolism , Spermatogenesis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Front Immunol ; 9: 1226, 2018.
Article En | MEDLINE | ID: mdl-29915585

Follicular helper T (Tfh) cells are the specialized CD4+ T cell subset that supports B cells to produce high-affinity antibodies and generate humoral memory. Not only is the function of Tfh cells instrumental to mount protect antibodies but also to support autoantibody production and promote systemic inflammation in autoimmune diseases. However, it remains unclear how the activation of Tfh cells is driven in autoimmune diseases. Here, we report that in patients with rheumatoid arthritis (RA), excessive generation of CXCR5+PD-1+ memory Tfh cells was observed and the frequency of memory Tfh cells correlated with disease activity score calculator for RA (DAS28). The differentiation of Tfh cells is dependent on signal transducer and activator of transcription 3 (STAT3), the key transcription factor downstream of cytokine signal pathways. A drastic increase of phosphorylated STAT3 (pSTAT3) in CD4+ T cells were detected in RA patients who also produced larger amounts of STAT3-stimulating cytokines, including IL-6, IL-21, IL-10, and leptin than those of healthy controls. Importantly, the phosphorylation status of STAT3 in CD4+ T cells positively correlated with the plasma concentration of IL-6 and the frequency of memory Tfh cells. This study reveals an IL-6-pSTAT3-Tfh immunoregulatory axis in the pathogenesis of RA and reinforces its candidature as biomarkers and targets for diagnosis and therapy.


Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Cell Differentiation/immunology , STAT3 Transcription Factor/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Female , Humans , Interleukin-6/metabolism , Lymphocyte Activation/immunology , Male , Middle Aged , Phosphorylation , Severity of Illness Index , Signal Transduction , T-Lymphocytes, Helper-Inducer/cytology , Young Adult
...