Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Opt Express ; 32(2): 1595-1608, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38297708

The network traffic of data centers (DCs) has increased unprecedentedly with the rapid development of digital economy. However, the data transmission faces security threats in the distributed optical interconnection and intensive interaction of DC networks. In this paper, we propose a chaotic phase noise-like encryption algorithm using geometric shaping (GS) for coherent DC interconnections (DCIs). A GS constellation is used to improve transmission performance, and it is combined with coherent equalization algorithms to improve security performance. Then, a chaotic encryption is designed based on phase noise-like transformation (PNLT). The data are effectively scrambled, and the confusion level of phase can be increased. Finally, 216 Gb/s 8-quadrature amplitude modulation (8-QAM) encrypted data are successfully verified on a 240 km transmission link of DCIs. The results show that this scheme can achieve a bit error rate (BER) performance gain of 1.1 dB and provide a highly compatible solution for realizing security enhanced DCIs.

2.
J Dent Sci ; 19(1): 58-63, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303873

Background/purpose: Excessive host immune response is thought to be an important cause of periodontal tissue damage during periodontitis. The potent chemotaxis produced by locally released chemokines is the key signal to trigger this response. Here, we aimed to investigate the expression of CXC chemokine receptor 1 (CXCR1), and chemokines interleukin-8 (IL-8) and pro-platelet basic protein (PPBP) in human inflammatory gingival tissues compared with healthy tissues. Materials and methods: A total of 54 human gingival tissues, 27 healthy and 27 inflammatory samples, were collected. Fifteen specimens of each group were employed for quantitative reverse transcription polymerase chain reaction to determine the mRNA levels of CXCR1, IL-8, and PPBP. Six samples of each group were used for Western blotting to investigate the protein expression of CXCR1 and for enzyme-linked immunosorbent assay to evaluate the protein levels of IL-8 and PPBP, respectively. Results: The mRNA levels of chemokine receptor CXCR1, chemokine IL-8, and PPBP in inflammatory gingival tissues were significantly higher than those in healthy controls (P < 0.05). The protein levels of CXCR1, IL-8, and PPBP in inflammatory gingival tissues were also significantly higher than those in healthy gingival tissues (P < 0.05). Conclusion: When compared to healthy gingival tissues, the expression of CXCR1, IL-8, and PPBP in inflammatory gingival tissues is higher.

3.
Nucleic Acids Res ; 52(D1): D1053-D1061, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37953328

Recent technological developments in spatial transcriptomics allow researchers to measure gene expression of cells and their spatial locations at the single-cell level, generating detailed biological insight into biological processes. A comprehensive database could facilitate the sharing of spatial transcriptomic data and streamline the data acquisition process for researchers. Here, we present the Spatial TranscriptOmics DataBase (STOmicsDB), a database that serves as a one-stop hub for spatial transcriptomics. STOmicsDB integrates 218 manually curated datasets representing 17 species. We annotated cell types, identified spatial regions and genes, and performed cell-cell interaction analysis for these datasets. STOmicsDB features a user-friendly interface for the rapid visualization of millions of cells. To further facilitate the reusability and interoperability of spatial transcriptomic data, we developed standards for spatial transcriptomic data archiving and constructed a spatial transcriptomic data archiving system. Additionally, we offer a distinctive capability of customizing dedicated sub-databases in STOmicsDB for researchers, assisting them in visualizing their spatial transcriptomic analyses. We believe that STOmicsDB could contribute to research insights in the spatial transcriptomics field, including data archiving, sharing, visualization and analysis. STOmicsDB is freely accessible at https://db.cngb.org/stomics/.


Databases, Genetic , Gene Expression Profiling , Transcriptome , Information Dissemination
4.
J Environ Sci (China) ; 139: 267-280, 2024 May.
Article En | MEDLINE | ID: mdl-38105054

The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.


Cadmium , Water Pollutants, Chemical , Cadmium/analysis , Adsorption , Water Pollutants, Chemical/analysis , Charcoal
5.
Molecules ; 28(2)2023 Jan 10.
Article En | MEDLINE | ID: mdl-36677759

The molecular weight, the triple-helix conformation, the monosaccharide content, the manner of glycosidic linkages, and the polysaccharide conjugates of polysaccharides all affect bioactivity. The purpose of this study was to determine how different molecular weights affected the bioactivity of the Lycium barbarum polysaccharides (LBPs). By ethanol-graded precipitation and ultrafiltration membrane separation, one oligosaccharide (LBPs-1, 1.912 kDa) and two polysaccharides (LBPs-2, 7.481 kDa; LBPs-3, 46.239 kDa) were obtained from Lycium barbarum. While the major component of LBPs-1 and LBPs-2 was glucose, the main constituents of LBPs-3 were arabinose, galactose, and glucose. LBPs-2 and LBPs-3 exhibited triple-helix conformations, as evidenced by the Congo red experiment and AFM data. Sugar residues of LBPs-2 and LBPs-3 were elucidated by NMR spectra. The polysaccharides (LBPs-2 and LBPs-3) exhibited much higher antioxidant capacities than oligosaccharide (LBPs-1). LBPs-3 showed higher oxygen radical absorbance capacity (ORAC) and superoxide dismutase (SOD) activity than LBPs-2, but a lower capability for scavenging ABTS+ radicals. In zebrafish, LBPs-2 and LBPs-3 boosted the growth of T-lymphocytes and macrophages, enhanced the immunological response, and mitigated the immune damage generated by VTI. In addition to the molecular weight, the results indicated that the biological activities would be the consequence of various aspects, such as the monosaccharide composition ratio, the chemical composition, and the chemical reaction mechanism.


Drugs, Chinese Herbal , Lycium , Animals , Lycium/chemistry , Molecular Weight , Zebrafish , Drugs, Chinese Herbal/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Glucose
6.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 2613-2626, 2023 02.
Article En | MEDLINE | ID: mdl-35427220

We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines. It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in the environment. In contrast to previous efforts which require to establish cross-view correspondence based on noisy 2D pose estimates, it directly estimates and tracks 3D poses from a 3D voxel-based representation constructed from multi-view images. We first discretize the 3D space by regular voxels and compute a feature vector for each voxel by averaging the body joint heatmaps that are inversely projected from all views. We estimate 3D poses from the voxel representation by predicting whether each voxel contains a particular body joint. Similarly, a Re-ID feature is computed for each voxel which is used to track the estimated 3D poses over time. The main advantage of the approach is that it avoids making any hard decisions based on individual images. The approach can robustly estimate and track 3D poses even when people are severely occluded in some cameras. It outperforms the state-of-the-art methods by a large margin on four public datasets including Shelf, Campus, Human3.6 M and CMU Panoptic.


Algorithms , Image Interpretation, Computer-Assisted , Posture , Humans
7.
Materials (Basel) ; 17(1)2023 Dec 31.
Article En | MEDLINE | ID: mdl-38204081

To improve the gas ionization ratio, the Mo-V-Cu-N coatings were deposited by pulsed dc magnetron sputtering with assistance from an anode layer ion source, and the influence of the V/Mo atomic ratio was explored with regard to the microstructure and mechanical properties of the coatings. The findings of this study indicated that the MoVCuN coatings exhibited a solid solution phase of FCC B1-MoVN with a prominent (220) preferred orientation, and the deposition rate was found to decrease from 4.7 to 1.8 nm/min when the V/Mo atomic ratio increased. The average surface roughness of the MoVCuN coatings gradually decreased, and the lowest surface roughness of 6.9 nm was achieved at a V/Mo atomic ratio of 0.31. Due to the enhanced ion bombardment effect, the coatings changed from a coarse columnar to a dense columnar crystal structure, and promoted grain refinement at higher V/Mo atomic ratios, contributing to a gradual improvement in the compressive residual stress, hardness and adhesion strength of the coatings.

8.
Comput Intell Neurosci ; 2022: 7914674, 2022.
Article En | MEDLINE | ID: mdl-36262602

The establishment of an intelligent, comprehensive, and all-encompassing information system for tourism management is the current trend in tourism informatization as a result of the continual development of modern information technology. Significant advancements in the field of VRGIS and its usage in research have been made as a result of the use of VRGIS to categorize, assess, plan, and manage tourism resources. The analysis of the recent development of VRGIS in tourism resource research is the first section of this work. This study examines and implements a mobile, computerized, and intelligent tourism service system that gives visitors a sense of the surrounding landscape using VRGIS. Three-dimensional mapping, environment detection, personal trajectory, and Weibo sharing are just a few of the system's many helpful features. While travelling, tourists can get services that are more intelligent and practical. The drawbacks of conventional geographic information systems include their reliance on sophisticated models, network limitations, and operational challenges. New software architecture is put in place to get rid of network restrictions, virtual reality peripherals are used to make operation more convenient, and system modeling is rebuilt using the TIN data model and model simplification. The results of experiments show improved refresh rates and peripheral expansion modules. The user experience is enhanced by this research.


Big Data , Tourism , Geographic Information Systems , Travel
9.
Materials (Basel) ; 15(7)2022 Mar 31.
Article En | MEDLINE | ID: mdl-35407886

A three-color electrophoretic display (EPD) can solve the defect of an insufficient color display of black/white EPDs, but it is difficult to achieve a high red saturation due to the same driving polarity between black and red electrophoretic particles. In this work, a separation stage was proposed in the driving process to increase the red saturation in three-color EPDs. Firstly, red particles' motion was analyzed by the electrophoretic theory and Stokes' theorem to optimize driving parameters. Secondly, the activity of black particles was analyzed by testing different driving process parameters, and an optimal activation parameter for red particles was obtained. Next, the separation stage parameters were analyzed to reduce the mixing degree of black and red electrophoretic particles. Experimental results showed that the red and black electrophoretic particles could be effectively separated. Compared with an existing driving method, the red saturation was increased by 23.4%.

10.
Micromachines (Basel) ; 13(2)2022 Feb 08.
Article En | MEDLINE | ID: mdl-35208398

Three-color electrophoretic displays (EPDs) are a new type of optoelectronic display device. However, they have the defect of red ghost images during gray scale transformation, which affects the accuracy of the gray scale display. In this paper, we proposed a new driving method for eliminating the red ghost images. A driving waveform was composed of an erasing stage, an activation stage, and a driving stage. First, the erasing stage was subdivided into a red erasing stage and an original erasing stage, the red erasing stage was used to eliminate residual red particles in the top of the microcapsules. Then, a high-frequency square wave was used as the activation stage for increasing the activity of the black and white particles. Meanwhile, the intensity of flickers could be decreased by the high-frequency square wave. Finally, the performance of the driving waveform was tested by a colorimeter. The experimental results showed that the driving waveform could effectively eliminate red ghost images by 80.43% and reduce the flicker intensity by 79.63%, compared with an existing driving waveform.

12.
IEEE Trans Neural Netw Learn Syst ; 33(8): 3598-3611, 2022 Aug.
Article En | MEDLINE | ID: mdl-33556022

Many data sources, such as human poses, lie on low-dimensional manifolds that are smooth and bounded. Learning low-dimensional representations for such data is an important problem. One typical solution is to utilize encoder-decoder networks. However, due to the lack of effective regularization in latent space, the learned representations usually do not preserve the essential data relations. For example, adjacent video frames in a sequence may be encoded into very different zones across the latent space with holes in between. This is problematic for many tasks such as denoising because slightly perturbed data have the risk of being encoded into very different latent variables, leaving output unpredictable. To resolve this problem, we first propose a neighborhood geometric structure-preserving variational autoencoder (SP-VAE), which not only maximizes the evidence lower bound but also encourages latent variables to preserve their structures as in ambient space. Then, we learn a set of small surfaces to approximately bound the learned manifold to deal with holes in latent space. We extensively validate the properties of our approach by reconstruction, denoising, and random image generation experiments on a number of data sources, including synthetic Swiss roll, human pose sequences, and facial expression images. The experimental results show that our approach learns more smooth manifolds than the baselines. We also apply our approach to the tasks of human pose refinement and facial expression image interpolation where it gets better results than the baselines.

13.
IEEE Trans Pattern Anal Mach Intell ; 44(7): 3386-3403, 2022 07.
Article En | MEDLINE | ID: mdl-33571087

Despite the remarkable progress achieved in conventional instance segmentation, the problem of predicting instance segmentation results for unobserved future frames remains challenging due to the unobservability of future data. Existing methods mainly address this challenge by forecasting features of future frames. However, these methods always treat features of multiple levels (e.g., coarse-to-fine pyramid features) independently and do not exploit them collaboratively, which results in inaccurate prediction for future frames; and moreover, such a weakness can partially hinder self-adaption of a future segmentation prediction model for different input samples. To solve this problem, we propose an adaptive aggregation approach called Auto-Path Aggregation Network (APANet), where the spatio-temporal contextual information obtained in the features of each individual level is selectively aggregated using the developed "auto-path". The "auto-path" connects each pair of features extracted at different pyramid levels for task-specific hierarchical contextual information aggregation, which enables selective and adaptive aggregation of pyramid features in accordance with different videos/frames. Our APANet can be further optimized jointly with the Mask R-CNN head as a feature decoder and a Feature Pyramid Network (FPN) feature encoder, forming a joint learning system for future instance segmentation prediction. We experimentally show that the proposed method can achieve state-of-the-art performance on three video-based instance segmentation benchmarks for future instance segmentation prediction.


Image Processing, Computer-Assisted , Neural Networks, Computer , Algorithms , Image Processing, Computer-Assisted/methods , Learning
14.
Genet Res (Camb) ; 2021: 2949986, 2021.
Article En | MEDLINE | ID: mdl-34899056

Aims: The main treatment for coronary heart disease is percutaneous coronary intervention (PCI), and drug-eluting stents are designed to inhibit vascular smooth muscle cell (VSMCs) proliferation and migration causing restenosis by releasing pharmacological agents into the vessel wall. Once drug-eluting stents are deployed, these pharmacological agents exert many biological effects in the coronary circulation, not only inhibition of VSMCs but also extension to vascular endothelial cells (VECs). The purpose of this study was to explore target molecules that inhibit VSMCs proliferation without affecting VECs. Methods: mRNA and protein expressions of transient receptor potential channels (TRPCs) in cultured VSMCs and VECs were determined by western blotting and RT-qPCR. VSMCs and VECs proliferation was evaluated using CCK-8 assays and western blotting of proliferating cell nuclear antigen (PCNA). Calcium backfilling assays were performed to detect intracellular calcium ion concentration in cultured VSMCs and VECs. Results: The TRPC6 expression was more abundant in VECs than VSMCs, while TRPC4 and TRPC5 expressions were more abundant in VSMCs than VECs. Knockdown of TRPC4 or TRPC5 alone had no remarkable inhibitory effect on VSMC proliferation. Synergistic knockdown of TRPC4 and TRPC5 inhibited the proliferation of VSMCs, declined the expression of the PCNA, and reduced the intracellular calcium ion concentration but not VECs. Conclusion: These data suggest that concurrent inhibition of TRPC4 and TRPC5 inhibits VSMCs proliferation without affecting VECs, thus providing novel targets for developing pharmacological agents for drug-eluting stents.


Endothelial Cells , Myocytes, Smooth Muscle , TRPC Cation Channels , Cell Proliferation , Cells, Cultured , Down-Regulation , Endothelial Cells/cytology , Humans , Myocytes, Smooth Muscle/cytology , Percutaneous Coronary Intervention , TRPC Cation Channels/genetics
15.
Membranes (Basel) ; 11(12)2021 Nov 24.
Article En | MEDLINE | ID: mdl-34940421

Electrowetting displays (EWDs) are one of the most potential electronic papers. However, they have the problem of oil film splitting, which could lead to a low aperture ratio of EWDs. In this paper, a driving waveform was proposed to reduce oil film splitting. The driving waveform was composed of a rising stage and a driving stage. First, the rupture voltage of oil film was analyzed by testing the voltage characteristic curve of EWDs. Then, a quadratic function waveform with an initial voltage was applied at the rising stage to suppress oil film splitting. Finally, a square wave was applied at the driving stage to maintain the aperture ratio of EWDs. The experimental results show that the luminance was increased by 8.78% and the aperture ratio was increased by 4.47% compared with an exponential function driving waveform.

16.
Micromachines (Basel) ; 12(11)2021 Oct 25.
Article En | MEDLINE | ID: mdl-34832718

The shortage of color in traditional electrophoretic displays (EPDs) can be compensated by three-color EPDs. However, the response time of black particles and white particles is increased. A new driving waveform based on the principle of three-color EPDs and electrophoresis theory was proposed to shorten the response time of black particles and white particles. The proposed driving waveform consisted of an erasing stage, an activation stage, a red driving stage, and a white or a black driving stage. The activation stage was mainly optimized in this paper. Firstly, the motion characteristics of the particles were analyzed using Stokes law and electrophoresis theory. Secondly, an optimal high frequency oscillation voltage was tested in order to improve the activity of the particles. Then, the influence of oscillation period and oscillation times on the activation stage were analyzed for optimizing the reference grayscale. According to the luminance of pixels, an oscillation period of 30 ms and an oscillation time of 30 were determined. The experimental results showed that the response time of black particles was shortened by 45%, and the response time of white particles was shortened by 40% compared with a traditional driving waveform.

17.
Micromachines (Basel) ; 12(5)2021 May 19.
Article En | MEDLINE | ID: mdl-34069735

Three-color electrophoretic displays (EPDs) have the advantages of multi-color display and low power consumption. However, their red particles have the disadvantage of long response time. In this paper, a driving waveform, which is based on electrophoresis theory and reference gray scale optimization, was proposed to shorten the response time of red particles in three-color EPDs. The driving waveform was composed of erasing stage, reference gray scale forming stage, red driving stage, and white or black driving stage. Firstly, the characteristics of particle motion were analyzed by electrophoresis theory and Stokes law. Secondly, the reference gray scale of the driving waveform was optimized to shorten the distance between red particles and a common electrode plate. Finally, an experimental platform was developed to test the performance of the driving waveform. Experimental results showed that the proposed driving waveform can shorten the response time of red particles by 65.57% and reduce the number of flickers by 66.67% compared with the traditional driving waveform.

18.
Micromachines (Basel) ; 12(2)2021 Feb 07.
Article En | MEDLINE | ID: mdl-33562290

At present, three-color electrophoretic displays (EPDs) have problems of dim brightness and insufficient color saturation. In this paper, a driving waveform based on a damping oscillation was proposed to optimize the red saturation in three-color EPDs. The optimized driving waveform was composed of an erasing stage, a particles activation stage, a red electrophoretic particles purification stage, and a red display stage. The driving duration was set to 360 ms, 880 ms, 400 ms, and 2400 ms, respectively. The erasing stage was used to erase the current pixel state and refresh to a black state. The particles' activation stage was set as two cycles, and then refreshed to the black state. The red electrophoretic particles' purification stage was a damping oscillation driving waveform. The red and black electrophoretic particles were separated by changing the magnitude and polarity of applied electric filed, so that the red electrophoretic particles were purified. The red display stage was a low positive voltage, and red electrophoretic particles were driven to the common electrode to display a red state. The experimental results showed that the maximum red saturation could reach 0.583, which was increased by 27.57% compared with the traditional driving waveform.

19.
Micromachines (Basel) ; 11(12)2020 Nov 30.
Article En | MEDLINE | ID: mdl-33266119

As a laboratory-on-a-chip application tool, digital microfluidics (DMF) technology is widely used in DNA-based applications, clinical diagnosis, chemical synthesis, and other fields. Additional components (such as heaters, centrifuges, mixers, etc.) are required in practical applications on DMF devices. In this paper, a DMF chip interconnection method based on electrowetting-on-dielectric (EWOD) was proposed. An open modified slippery liquid-infused porous surface (SLIPS) membrane was used as the dielectric-hydrophobic layer material, which consisted of polytetrafluoroethylene (PTFE) membrane and silicone oil. Indium tin oxide (ITO) glass was used to manufacture the DMF chip. In order to test the relationship between the splicing gap and droplet moving, the effect of the different electrodes on/off time on the minimum driving voltage when the droplet crossed a splicing gap was investigated. Then, the effects of splicing gaps of different widths, splicing heights, and electrode misalignments were investigated, respectively. The experimental results showed that a driving voltage of 119 V was required for a droplet to cross a splicing gap width of 300 µm when the droplet volume was 10 µL and the electrode on/off time was 600 ms. At the same time, the droplet could climb a height difference of 150 µm with 145 V, and 141 V was required when the electrode misalignment was 1000 µm. Finally, the minimum voltage was not obviously changed, when the same volume droplet with different aqueous solutions crossed the splicing gap, and the droplet could cross different chip types. These splicing solutions show high potential for simultaneous detection of multiple components in human body fluids.

...