Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Xray Sci Technol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38995761

RESUMEN

BACKGROUND: Chest X-rays (CXR) are widely used to facilitate the diagnosis and treatment of critically ill and emergency patients in clinical practice. Accurate hemi-diaphragm detection based on postero-anterior (P-A) CXR images is crucial for the diaphragm function assessment of critically ill and emergency patients to provide precision healthcare for these vulnerable populations. OBJECTIVE: Therefore, an effective and accurate hemi-diaphragm detection method for P-A CXR images is urgently developed to assess these vulnerable populations' diaphragm function. METHODS: Based on the above, this paper proposes an effective hemi-diaphragm detection method for P-A CXR images based on the convolutional neural network (CNN) and graphics. First, we develop a robust and standard CNN model of pathological lungs trained by human P-A CXR images of normal and abnormal cases with multiple lung diseases to extract lung fields from P-A CXR images. Second, we propose a novel localization method of the cardiophrenic angle based on the two-dimensional projection morphology of the left and right lungs by graphics for detecting the hemi-diaphragm. RESULTS: The mean errors of the four key hemi-diaphragm points in the lung field mask images abstracted from static P-A CXR images based on five different segmentation models are 9.05, 7.19, 7.92, 7.27, and 6.73 pixels, respectively. Besides, the results also show that the mean errors of these four key hemi-diaphragm points in the lung field mask images abstracted from dynamic P-A CXR images based on these segmentation models are 5.50, 7.07, 4.43, 4.74, and 6.24 pixels,respectively. CONCLUSION: Our proposed hemi-diaphragm detection method can effectively perform hemi-diaphragm detection and may become an effective tool to assess these vulnerable populations' diaphragm function for precision healthcare.

2.
Front Neurosci ; 18: 1363930, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680446

RESUMEN

Introduction: In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic. Methods: We introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability. Results: AFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision. Discussion: The proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.

3.
Math Biosci Eng ; 21(1): 34-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303412

RESUMEN

Accurate determination of the onset time in acute ischemic stroke (AIS) patients helps to formulate more beneficial treatment plans and plays a vital role in the recovery of patients. Considering that the whole brain may contain some critical information, we combined the Radiomics features of infarct lesions and whole brain to improve the prediction accuracy. First, the radiomics features of infarct lesions and whole brain were separately calculated using apparent diffusion coefficient (ADC), diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences of AIS patients with clear onset time. Then, the least absolute shrinkage and selection operator (Lasso) was used to select features. Four experimental groups were generated according to combination strategies: Features in infarct lesions (IL), features in whole brain (WB), direct combination of them (IW) and Lasso selection again after direct combination (IWS), which were used to evaluate the predictive performance. The results of ten-fold cross-validation showed that IWS achieved the best AUC of 0.904, which improved by 13.5% compared with IL (0.769), by 18.7% compared with WB (0.717) and 4.2% compared with IW (0.862). In conclusion, combining infarct lesions and whole brain features from multiple sequences can further improve the accuracy of AIS onset time.


Asunto(s)
Accidente Cerebrovascular Isquémico , Humanos , Radiómica , Encéfalo/diagnóstico por imagen , Infarto , Aprendizaje Automático
4.
Diagnostics (Basel) ; 13(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37443556

RESUMEN

Cerebrovascular and airway structures are tubular structures used for transporting blood and gases, respectively, providing essential support for the normal activities of the human body. Accurately segmenting these tubular structures is the basis of morphology research and pathological detection. Nevertheless, accurately segmenting these structures from images presents great challenges due to their complex morphological and topological characteristics. To address this challenge, this paper proposes a framework UARAI based on the U-Net multi-scale reverse attention network and sparse convolution network. The framework utilizes a multi-scale structure to effectively extract the global and deep detail features of vessels and airways. Further, it enhances the extraction ability of fine-edged features by a joint reverse attention module. In addition, the sparse convolution structure is introduced to improve the features' expression ability without increasing the model's complexity. Finally, the proposed training sample cropping strategy reduces the influence of block boundaries on the accuracy of tubular structure segmentation. The experimental findings demonstrate that the UARAI-based metrics, namely Dice and IoU, achieve impressive scores of 90.31% and 82.33% for cerebrovascular segmentation and 93.34% and 87.51% for airway segmentation, respectively. Compared to commonly employed segmentation techniques, the proposed method exhibits remarkable accuracy and robustness in delineating tubular structures such as cerebrovascular and airway structures. These results hold significant promise in facilitating medical image analysis and clinical diagnosis, offering invaluable support to healthcare professionals.

5.
Life (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430982

RESUMEN

Accurate and reliable outcome predictions can help evaluate the functional recovery of ischemic stroke patients and assist in making treatment plans. Given that recovery factors may be hidden in the whole-brain features, this study aims to validate the role of dynamic radiomics features (DRFs) in the whole brain, DRFs in local ischemic lesions, and their combination in predicting functional outcomes of ischemic stroke patients. First, the DRFs in the whole brain and the DRFs in local lesions of dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI) images are calculated. Second, the least absolute shrinkage and selection operator (Lasso) is used to generate four groups of DRFs, including the outstanding DRFs in the whole brain (Lasso (WB)), the outstanding DRFs in local lesions (Lasso (LL)), the combination of them (combined DRFs), and the outstanding DRFs in the combined DRFs (Lasso (combined)). Then, the performance of the four groups of DRFs is evaluated to predict the functional recovery in three months. As a result, Lasso (combined) in the four groups achieves the best AUC score of 0.971, which improves the score by 8.9% compared with Lasso (WB), and by 3.5% compared with Lasso (WB) and combined DRFs. In conclusion, the outstanding combined DRFs generated from the outstanding DRFs in the whole brain and local lesions can predict functional outcomes in ischemic stroke patients better than the single DRFs in the whole brain or local lesions.

6.
Front Neurol ; 13: 889090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408497

RESUMEN

Ischemic stroke has become a severe disease endangering human life. However, few studies have analyzed the radiomics features that are of great clinical significance for the diagnosis, treatment, and prognosis of patients with ischemic stroke. Due to sufficient cerebral blood flow information in dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) images, this study aims to find the critical features hidden in DSC-PWI images to characterize hypoperfusion areas (HA) and normal areas (NA). This study retrospectively analyzed 80 DSC-PWI data of 56 patients with ischemic stroke from 2013 to 2016. For exploring features in HA and NA,13 feature sets (F method ) were obtained from different feature selection algorithms. Furthermore, these 13 F method were validated in identifying HA and NA and distinguishing the proportion of ischemic lesions in brain tissue. In identifying HA and NA, the composite score (CS) of the 13 F method ranged from 0.624 to 0.925. F Lasso in the 13 F method achieved the best performance with mAcc of 0.958, mPre of 0.96, mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. As to classifying the proportion of the ischemic region, the best CS was 0.786, with Acc of 0.888 and Pre of 0.863. The classification ability was relatively stable when the reference threshold (RT) was <0.25. Otherwise, when RT was >0.25, the performance will gradually decrease as its increases. These results showed that radiomics features extracted from the Lasso algorithms could accurately reflect cerebral blood flow changes and classify HA and NA. Besides, In the event of ischemic stroke, the ability of radiomics features to distinguish the proportion of ischemic areas needs to be improved. Further research should be conducted on feature engineering, model optimization, and the universality of the algorithms in the future.

7.
J Clin Med ; 11(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36143010

RESUMEN

BACKGROUND: The ability to accurately detect ischemic stroke and predict its neurological recovery is of great clinical value. This study intended to evaluate the performance of whole-brain dynamic radiomics features (DRF) for ischemic stroke detection, neurological impairment assessment, and outcome prediction. METHODS: The supervised feature selection (Lasso) and unsupervised feature-selection methods (five-feature dimension-reduction algorithms) were used to generate four experimental groups with DRF in different combinations. Ten machine learning models were used to evaluate their performance by ten-fold cross-validation. RESULTS: In experimental group_A, the best AUCs (0.873 for stroke detection, 0.795 for NIHSS assessment, and 0.818 for outcome prediction) were obtained by outstanding DRF selected by Lasso, and the performance of significant DRF was better than the five-feature dimension-reduction algorithms. The selected outstanding dimension-reduction DRF in experimental group_C obtained a better AUC than dimension-reduction DRF in experimental group_A but were inferior to the outstanding DRF in experimental group_A. When combining the outstanding DRF with each dimension-reduction DRF (experimental group_B), the performance can be improved in ischemic stroke detection (best AUC = 0.899) and NIHSS assessment (best AUC = 0.835) but failed in outcome prediction (best AUC = 0.806). The performance can be further improved when combining outstanding DRF with outstanding dimension-reduction DRF (experimental group_D), achieving the highest AUC scores in all three evaluation items (0.925 for stroke detection, 0.853 for NIHSS assessment, and 0.828 for outcome prediction). By the method in this study, comparing the best AUC of Ft-test in experimental group_A and the best_AUC in experimental group_D, the AUC in stroke detection increased by 19.4% (from 0.731 to 0.925), the AUC in NIHSS assessment increased by 20.1% (from 0.652 to 0.853), and the AUC in prognosis prediction increased by 14.9% (from 0.679 to 0.828). This study provided a potential clinical tool for detailed clinical diagnosis and outcome prediction before treatment.

8.
Diagnostics (Basel) ; 12(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35885568

RESUMEN

BACKGROUND: Accurate outcome prediction is of great clinical significance in customizing personalized treatment plans, reducing the situation of poor recovery, and objectively and accurately evaluating the treatment effect. This study intended to evaluate the performance of clinical text information (CTI), radiomics features, and survival features (SurvF) for predicting functional outcomes of patients with ischemic stroke. METHODS: SurvF was constructed based on CTI and mRS radiomics features (mRSRF) to improve the prediction of the functional outcome in 3 months (90-day mRS). Ten machine learning models predicted functional outcomes in three situations (2-category, 4-category, and 7-category) using seven feature groups constructed by CTI, mRSRF, and SurvF. RESULTS: For 2-category, ALL (CTI + mRSRF+ SurvF) performed best, with an mAUC of 0.884, mAcc of 0.864, mPre of 0.877, mF1 of 0.86, and mRecall of 0.864. For 4-category, ALL also achieved the best mAuc of 0.787, while CTI + SurvF achieved the best score with mAcc = 0.611, mPre = 0.622, mF1 = 0.595, and mRe-call = 0.611. For 7-category, CTI + SurvF performed best, with an mAuc of 0.788, mPre of 0.519, mAcc of 0.529, mF1 of 0.495, and mRecall of 0.47. CONCLUSIONS: The above results indicate that mRSRF + CTI can accurately predict functional outcomes in ischemic stroke patients with proper machine learning models. Moreover, combining SurvF will improve the prediction effect compared with the original features. However, limited by the small sample size, further validation on larger and more varied datasets is necessary.

9.
Comput Math Methods Med ; 2021: 5868949, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055040

RESUMEN

With the rapid development of science and technology, ultrasound has been paid more and more attention by people, and it is widely used in engineering, diagnosis, and detection. In this paper, an ultrasonic image recognition method based on immune algorithm is proposed for ultrasonic images, and its method is applied to medical ultrasound liver image recognition. Firstly, this paper grays out the ultrasound liver image and selects the region of interest of the image. Secondly, it extracts the feature based on spatial gray matrix independent matrix, spatial frequency decomposition, and fractal features. Then, the immune algorithm is used to classify and identify the normal liver, liver cirrhosis, and liver cancer ultrasound images. Finally, based on the deficiency of the immune algorithm, it is combined with the support vector machine to form an optimized immune algorithm, which improves the performance of ultrasonic liver image classification and recognition. The simulation shows that this paper can effectively classify the normal liver, liver cirrhosis, and liver cancer ultrasound images. Compared with the traditional immune algorithm, this paper combines the immune algorithm with the support vector machine, and the optimized immune algorithm can effectively improve the performance of ultrasonic liver image classification and recognition.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Hígado/diagnóstico por imagen , Ultrasonografía/métodos , Biología Computacional , Simulación por Computador , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Cirrosis Hepática/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Modelos Inmunológicos , Reconocimiento de Normas Patrones Automatizadas/métodos , Reconocimiento de Normas Patrones Automatizadas/estadística & datos numéricos , Máquina de Vectores de Soporte , Ultrasonografía/estadística & datos numéricos
10.
Health Inf Sci Syst ; 5(1): 2, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29038732

RESUMEN

PURPOSE: Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. METHODS: To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. RESULTS: We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. CONCLUSIONS: This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

11.
ScientificWorldJournal ; 2015: 473168, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26495425

RESUMEN

Clinical cases are primary and vital evidence for Traditional Chinese Medicine (TCM) clinical research. A great deal of medical knowledge is hidden in the clinical cases of the highly experienced TCM practitioner. With a deep Chinese culture background and years of clinical experience, an experienced TCM specialist usually has his or her unique clinical pattern and diagnosis idea. Preserving huge clinical cases of experienced TCM practitioners as well as exploring the inherent knowledge is then an important but arduous task. The novel system ISMAC (Intelligent System for Management and Analysis of Clinical Cases in TCM) is designed and implemented for customized management and intelligent analysis of TCM clinical data. Customized templates with standard and expert-standard symptoms, diseases, syndromes, and Chinese Medince Formula (CMF) are constructed in ISMAC, according to the clinical diagnosis and treatment characteristic of each TCM specialist. With these templates, clinical cases are archived in order to maintain their original characteristics. Varying data analysis and mining methods, grouped as Basic Analysis, Association Rule, Feature Reduction, Cluster, Pattern Classification, and Pattern Prediction, are implemented in the system. With a flexible dataset retrieval mechanism, ISMAC is a powerful and convenient system for clinical case analysis and clinical knowledge discovery.


Asunto(s)
Manejo de Caso , Estadística como Asunto , Recolección de Datos , Humanos , Síndrome
12.
BMC Med Genomics ; 7 Suppl 2: S5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25350857

RESUMEN

BACKGROUND: As a high dimensional problem, analysis of microarray data sets is a challenging task, where many weakly relevant or redundant features affect overall performance of classifiers. METHODS: The previous works used redundant feature detection methods to select discriminative compact gene set, which only considered the relationship among features, not the redundancy of classification ability among features. This study propose a novel algorithm named RESI (Redundant fEature Selection depending on Instance), which considers label information in the measure of feature subset redundancy. RESULTS: Experimental results on benchmark data sets show that RESI performs better than the previous state-of-the-art algorithms on redundant feature selection methods like mRMR. CONCLUSIONS: We propose an effective supervised redundant feature detection method for tumor classification.


Asunto(s)
Algoritmos , Inteligencia Artificial , Biología Computacional/métodos , Neoplasias/clasificación , Neoplasias/genética
13.
IEEE Trans Nanobioscience ; 13(2): 73-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24893361

RESUMEN

As an important tumor suppressor protein, reactivating mutated p53 was found in many kinds of human cancers and that restoring active p53 would lead to tumor regression. In recent years, more and more data extracted from biophysical simulations, which makes the modelling of mutant p53 transcriptional activity suffering from the problems of huge amount of instances and high feature dimension. Incremental feature extraction is effective to facilitate analysis of large-scale data. However, most current incremental feature extraction methods are not suitable for processing big data with high feature dimension. Partial Least Squares (PLS) has been demonstrated to be an effective dimension reduction technique for classification. In this paper, we design a highly efficient and powerful algorithm named Incremental Partial Least Squares (IPLS), which conducts a two-stage extraction process. In the first stage, the PLS target function is adapted to be incremental with updating historical mean to extract the leading projection direction. In the last stage, the other projection directions are calculated through equivalence between the PLS vectors and the Krylov sequence. We compare IPLS with some state-of-the-arts incremental feature extraction methods like Incremental Principal Component Analysis, Incremental Maximum Margin Criterion and Incremental Inter-class Scatter on real p53 proteins data. Empirical results show IPLS performs better than other methods in terms of balanced classification accuracy.


Asunto(s)
Algoritmos , Proteína p53 Supresora de Tumor/química , Humanos , Análisis de los Mínimos Cuadrados , Análisis de Componente Principal
14.
Int J Data Min Bioinform ; 3(1): 85-103, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19432378

RESUMEN

It is hard to analyse gene expression data which has only a few observations but with thousands of measured genes. Partial Least Squares based Dimension Reduction (PLSDR) is superior for handling such high dimensional problems, but irrelevant features will introduce errors into the dimension reduction process. Here, feature selection is applied to filter the data and an algorithm named PLSDRg is described by integrating PLSDR with gene elimination, which is performed by the indication of t-statistic scores on standardised probes. Experimental results on six microarray data sets show that PLSDRg is effective and reliable to improve generalisation performance of classifiers.


Asunto(s)
Algoritmos , Artefactos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Interpretación Estadística de Datos , Análisis de los Mínimos Cuadrados , Tamaño de la Muestra
15.
BMC Genomics ; 9 Suppl 2: S24, 2008 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-18831790

RESUMEN

BACKGROUND: Dimension reduction is a critical issue in the analysis of microarray data, because the high dimensionality of gene expression microarray data set hurts generalization performance of classifiers. It consists of two types of methods, i.e. feature selection and feature extraction. Principle component analysis (PCA) and partial least squares (PLS) are two frequently used feature extraction methods, and in the previous works, the top several components of PCA or PLS are selected for modeling according to the descending order of eigenvalues. While in this paper, we prove that not all the top features are useful, but features should be selected from all the components by feature selection methods. RESULTS: We demonstrate a framework for selecting feature subsets from all the newly extracted components, leading to reduced classification error rates on the gene expression microarray data. Here we have considered both an unsupervised method PCA and a supervised method PLS for extracting new components, genetic algorithms for feature selection, and support vector machines and k nearest neighbor for classification. Experimental results illustrate that our proposed framework is effective to select feature subsets and to reduce classification error rates. CONCLUSION: Not only the top features newly extracted by PCA or PLS are important, therefore, feature selection should be performed to select subsets from new features to improve generalization performance of classifiers.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Componente Principal , Algoritmos , Biología Computacional/métodos , Humanos , Análisis de los Mínimos Cuadrados , Modelos Estadísticos , Neoplasias/genética , Reconocimiento de Normas Patrones Automatizadas/métodos
16.
BMC Bioinformatics ; 9 Suppl 6: S8, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18541061

RESUMEN

BACKGROUND: Analysis of gene expression data for tumor classification is an important application of bioinformatics methods. But it is hard to analyse gene expression data from DNA microarray experiments by commonly used classifiers, because there are only a few observations but with thousands of measured genes in the data set. Dimension reduction is often used to handle such a high dimensional problem, but it is obscured by the existence of amounts of redundant features in the microarray data set. RESULTS: Dimension reduction is performed by combing feature extraction with redundant gene elimination for tumor classification. A novel metric of redundancy based on DIScriminative Contribution (DISC) is proposed which estimates the feature similarity by explicitly building a linear classifier on each gene. Compared with the standard linear correlation metric, DISC takes the label information into account and directly estimates the redundancy of the discriminative ability of two given features. Based on the DISC metric, a novel algorithm named REDISC (Redundancy Elimination based on Discriminative Contribution) is proposed, which eliminates redundant genes before feature extraction and promotes performance of dimension reduction. Experimental results on two microarray data sets show that the REDISC algorithm is effective and reliable to improve generalization performance of dimension reduction and hence the used classifier. CONCLUSION: Dimension reduction by performing redundant gene elimination before feature extraction is better than that with only feature extraction for tumor classification, and redundant gene elimination in a supervised way is superior to the commonly used unsupervised method like linear correlation coefficients.


Asunto(s)
Algoritmos , Biomarcadores de Tumor/análisis , Diagnóstico por Computador/métodos , Perfilación de la Expresión Génica/métodos , Proteínas de Neoplasias/análisis , Neoplasias/diagnóstico , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA