Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Biology (Basel) ; 13(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927274

RESUMEN

Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (H2S), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management.

2.
Infect Drug Resist ; 17: 2261-2272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854782

RESUMEN

Objective: To analyze bacterial distribution and antibiotic resistance in clinical specimens from a Chinese hospital for evaluating environmental factors' impact on pathogen prevalence. Methods: From January 2017 to December 2021, we collected 42,854 clinical specimens from hospitalized children and women. The specimens were cultured on various agar plates and incubated at 35°C for 18-48 h. Their identification was performed using standard biochemical methods and Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), whereas antibiotic susceptibilities were determined using the VITEK 2 system. Concurrent environmental data from Wuhan were analyzed for correlations with pathogen prevalence using multiple linear stepwise regression. Results: Of the 24,555 bacterial strains isolated, the majority were gram-positive, and sputum was the most common specimen type. Haemophilus influenzae and Escherichia coli were the most prevalent pathogens in sputum and urine samples, respectively. Notably, H. influenzae and Streptococcus pneumoniae affected children under 6 years of age the most. Furthermore, H. influenzae showed high ampicillin resistance but low cefotaxime resistance; S. pneumoniae was sensitive to penicillin G, and E. coli was resistant to ampicillin but sensitive to cefotetan. The prevalence of multidrug-resistant organisms was below national averages. In terms of seasonality, H. influenzae peaked during late winter and early spring, and environmental analysis indicated positive correlations between PM2.5 and PM10, and H. influenzae and S. pneumoniae prevalence. In addition, NO2 levels were positively correlated with increased S. aureus and M. catarrhalis prevalence; E coli prevalence was negatively correlated with ozone levels. Conclusion: This study provides valuable insights into the distribution and antibiotic resistance patterns of bacterial pathogens in maternal and child healthcare facilities in Wuhan, China. Environmental factors significantly influence the epidemiology of certain bacterial pathogens. Implementing integrated health strategies that combine microbial surveillance with environmental monitoring is needed to effectively manage and prevent bacterial infections.

3.
Mater Today Bio ; 26: 101074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736613

RESUMEN

The mechanical environment of vascular endothelial cells (ECs) encompasses a wide range of curvatures due to variations in blood vessel diameters. Integrins, key mediators of cell-matrix interactions, establish connections between the extracellular matrix and the actin cytoskeleton, influencing diverse cellular behaviors. In this study, we explored the impact of spatial confinement on human umbilical vein ECs (HUVECs) cultured within three-dimensional hydrogel microgrooves of varying curvatures and the underlying role of integrins in mediating cellular responses. Employing maskless lithography, we successfully fabricated precise and wall curvatures-controlled hydrogel microgrooves, conferring spatial constraints on the cells. Our investigations revealed substantial alterations in HUVEC behavior within the hydrogel microgrooves with varying sidewall curvatures, marked by reduced cell size, enhanced orientation, and increased apoptosis. Interestingly, microgroove curvature emerged as a crucial factor influencing cell orientation and apoptosis, with rectangular microgrooves eliciting distinct changes in cell orientation, while ring-form microgrooves exhibited higher apoptosis rates. The side-wall effect in the 20 µm region near the microgroove wall had the greatest influence on cell orientation and apoptosis. HUVECs within the microgrooves exhibited elevated integrin expression, and inhibition of αV-integrin by cilengitide significantly curtailed cell apoptosis without affecting proliferation. Additionally, integrin-mediated cell traction force closely correlated with the spatial confinement effect. Cilengitide not only reduced integrin and focal adhesion expression but also attenuated cell traction force and cytoskeletal actin filament alignment. Overall, our findings elucidate the spatial confinement of ECs in hydrogel microgrooves and underscores the pivotal role of integrins, particularly αV-integrin, in mediating cell traction force and apoptosis within this microenvironment.

4.
Small ; : e2312122, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709229

RESUMEN

Management of functional groups in hole transporting materials (HTMs) is a feasible strategy to improve perovskite solar cells (PSCs) efficiency. Therefore, starting from the carbazole-diphenylamine-based JY7 molecule, JY8 and JY9 molecules are incorporated into the different electron-withdrawing groups of fluorine and cyano groups on the side chains. The theoretical results reveal that the introduction of electron-withdrawing groups of JY8 and JY9 can improve these highest occupied molecular orbital (HOMO) energy levels, intermolecular stacking arrangements, and stronger interface adsorption on the perovskite. Especially, the results of molecular dynamics (MD) indicate that the fluorinated JY8 molecule can yield a preferred surface orientation, which exhibits stronger interface adsorption on the perovskite. To validate the computational model, the JY7-JY9 are synthesized and assembled into PSC devices. Experimental results confirm that the HTMs of JY8 exhibit outstanding performance, such as high hole mobility, low defect density, and efficient hole extraction. Consequently, the PSC devices based on JY8 achieve a higher PCE than those of JY7 and JY9. This work highlights the management of the electron-withdrawing groups in HTMs to realize the goal of designing HTMs for the improvement of PSC efficiency.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38692737

RESUMEN

Angiogenesis, the formation of new blood microvessels, is a necessary physiological process for tissue generation and repair. Sufficient blood supply to the tissue is dependent on microvascular density, while the material exchange between the circulating blood and the surrounding tissue is controlled by microvascular permeability. We thus begin this article by reviewing the key signaling factors, particularly vascular endothelial growth factor (VEGF), which regulates both angiogenesis and microvascular permeability. We then review the role of angiogenesis in tissue growth (bone regeneration) and wound healing. Finally, we review angiogenesis as a pathological process in tumorigenesis, intraplaque hemorrhage, cerebral microhemorrhage, pulmonary fibrosis, and hepatic fibrosis. Since the glycocalyx is important for both angiogenesis and microvascular permeability, we highlight the role of the glycocalyx in regulating the interaction between tumor cells and endothelial cells (ECs) and VEGF-containing exosome release and uptake by tumor-associated ECs, all of which contribute to tumorigenesis and metastasis.

6.
J Colloid Interface Sci ; 668: 448-458, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691955

RESUMEN

People have been focusing on how to improve the specific capacity and cycling stability of lithium-sulfur batteries at room temperature, however, on some special occasions such as cold cities and aerospace fields, the operating temperature is low, which dramatically hinders the performance of batteries. Here, we report an iron carbide (Fe3C)/rGO composite as electrode host, the Fe3C nanoparticles in the composite have strong adsorption and high catalytic ability for polysulfide. The rGO makes the distribution of Fe3C nanoparticles more disperse, and this specific structure makes the deposition of Li2S more uniform. Therefore, it realizes the rapid transformation and high performance of lithium-sulfur batteries at both room and low temperatures. At room temperature, after 100 cycles at 1C current density, the reversible specific capacity of the battery can be stabilized at 889 ± 7.1 mAh/g. Even at -40 °C, in the first cycle battery still emits 542.9 ± 3.7 mAh/g specific capacity. This broadens the operating temperature for lithium-sulfur batteries and also provides a new idea for the selection of host materials for sulfur in low-temperature lithium-sulfur batteries.

7.
Front Plant Sci ; 15: 1372585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650700

RESUMEN

In plant horticulture, furrow fertilizing is a common method to promote plant nutrient absorption and to effectively avoid fertilizer waste. Considering the high resistance caused by soil compaction in southern orchards, an energy-saving ditching device was proposed. A standard ditching blade with self-excited vibration device was designed, and operated in sandy clay with a tillage depth of 30cm. To conduct self-excited vibration ditching experiments, a simulation model of the interaction between soil and the ditching mechanism was established by coupling the ADAMS and EDEM software. To begin with, the ditching device model was first set up, taking into account its motion and morphological characteristics. Then, the MBD-DEM coupling method was employed to investigate the interaction mechanism and the effect of ditching between the soil particles and the ditching blade. Afterwards, the time-domain and frequency-domain characteristics of vibration signals during the ditching process were analyzed using the fast fourier transform (FFT) method, and the energy distribution characteristics were extracted using power spectral density (PSD). The experimental results revealed that the vibrations ditching device has reciprocating displacement in the Dx direction and torsional displacements in the θy and θz directions during operation, verifying the correctness of the coupling simulation and the effectiveness of vibrations ditching resistance reduction. Also, a load vibrations ditching bench test was conducted, and the results demonstrated that the self-excited vibrations ditching device, compared with common ditching device, achieved a reduction in ditching resistance of up to 12.3%. The reasonable parameters of spring stiffness, spring damping, and spring quality in self-excited vibrations ditching device can achieve a satisfied ditching performance with relatively low torque consumption at an appropriate speed.

8.
Cancer Immunol Immunother ; 73(3): 58, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386050

RESUMEN

B cells possess anti-tumor functions mediated by granzyme B, in addition to their role in antigen presentation and antibody production. However, the variations in granzyme B+ B cells between tumor and non-tumor tissues have been largely unexplored. Therefore, we integrated 25 samples from the Gene Expression Omnibus database and analyzed the tumor immune microenvironment. The findings uncovered significant inter- and intra-tumoral heterogeneity. Notably, single-cell data showed higher proportions of granzyme B+ B cells in tumor samples compared to control samples, and these levels were positively associated with disease-free survival. The elevated levels of granzyme B+ B cells in tumor samples resulted from tumor cell chemotaxis through the MIF- (CD74 + CXCR4) signaling pathway. Furthermore, the anti-tumor function of granzyme B+ B cells in tumor samples was adversely affected, potentially providing an explanation for tumor progression. These findings regarding granzyme B+ B cells were further validated in an independent clinic cohort of 40 liver transplant recipients with intrahepatic cholangiocarcinoma. Our study unveils an interaction between granzyme B+ B cells and intrahepatic cholangiocarcinoma, opening up potential avenues for the development of novel therapeutic strategies against this disease.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Trasplante de Hígado , Humanos , Granzimas/genética , Colangiocarcinoma/genética , Colangiocarcinoma/cirugía , Pronóstico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/cirugía , Conductos Biliares Intrahepáticos , Microambiente Tumoral
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 87-94, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38322512

RESUMEN

Objective: To construct microscale rectangular hydrogel grooves and to investigate the morphology and alignment of human umbilical vein endothelial cells (HUVECs) under spatial constraints. Vascular endothelial cell morphology and alignment are important factors in vascular development and the maintenance of homeostasis. Methods: A 4-arm polyethylene glycol-acrylate (PEG-acrylate) hydrogel was used to fabricate rectangular microgrooves of the widths of 60 µm, 100 µm, and 140 µm. The sizes and the fibronectin (FN) adhesion of these hydrogel microgrooves were measured. HUVECs were seeded onto the FN-coated microgrooves, while the flat surface without micropatterns was used as the control. After 48 hours of incubation, the morphology and orientation of the cells were examined. The cytoskeleton was labelled with phalloidine and the orientation of the cytoskeleton in the hydrogel microgrooves was observed by laser confocal microscopy. Results: The hydrogel microgrooves constructed exhibited uniform and well-defined morphology, a complete structure, and clear edges, with the width deviation being less than 3.5%. The depth differences between the hydrogel microgrooves of different widths were small and the FN adhesion is uniform, providing a micro-patterned growth interface for cells. In the control group, the cells were arranged haphazardly in random orientations and the cell orientation angle was (46.9±1.8)°. In contrast, the cell orientation angle in the hydrogel microgrooves was significantly reduced (P<0.001). However, the cell orientation angles increased with the increase in hydrogel microgroove width. For the 60 µm, 100 µm, and 140 µm hydrogel microgrooves, the cell orientation angles were (16.4±2.8)°, (24.5±3.2)°, and (30.3±3.5)°, respectively. Compared to that of the control group (35.7%), the number of cells with orientation angles <30° increased significantly in the hydrogel microgrooves of different widths (P<0.001). However, as the width of the hydrogel microgrooves increased, the number of cells with orientation angles <30° gradually decreased (79.9%, 62.3%, 54.7%, respectively), while the number of cells with orientation angles between 60°-90° increased (P<0.001). The cell bodies in the microgrooves were smaller and more rounded in shape. The cells were aligned along the direction of the microgrooves and corresponding changes occurred in the arrangement of the cell cytoskeleton. In the control group, cytoskeletal filaments were aligned in random directions, presenting an orientation angle of (45.5±3.7)°. Cytoskeletal filaments were distributed evenly within various orientation angles. However, in the 60 µm, 100 µm, and 140 µm hydrogel microgrooves, the orientation angles of the cytoskeletal filaments were significantly decreased, measuring (14.4±3.1)°, (24.7±3.5)°, and (31.9±3.3)°, respectively. The number of cytoskeletal filaments with orientation angles <30° significantly increased in hydrogel microgrooves of different widths (P<0.001). However, as the width of the hydrogel microgrooves increased, the number of cytoskeletal filaments with orientation angles <30° gradually decreased, while the number of cytoskeletal filaments with orientation angles between 60°-90° gradually increased (P<0.001). Conclusion: Hydrogel microgrooves can regulate the morphology and orientation of HUVECs and mimic to a certain extent the in vivo microenvironment of vascular endothelial cells, providing an experimental model that bears better resemblance to human physiology for the study of the unique physiological functions of vascular endothelial cells. Nonetheless, the molecular mechanism of spatial constraints on the morphology and the assembly of vascular endothelial cell needs to be further investigated.


Asunto(s)
Acrilatos , Hidrogeles , Humanos , Células Endoteliales de la Vena Umbilical Humana , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Adhesión Celular
10.
Nat Commun ; 15(1): 1303, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347001

RESUMEN

Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.


Asunto(s)
Vacunas contra la COVID-19 , Liposomas , Nanopartículas , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , Lípidos/química , Nanopartículas/química , Transfección
11.
Biomacromolecules ; 25(2): 1027-1037, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38166400

RESUMEN

Subunit vaccines would benefit from a safe particle-based adjuvant. Elastin-like polypeptide (ELP)-based micelles are interesting candidate adjuvants due to their well-defined size and easy modification with protein-based cargo. Coiled coils can facilitate noncovalent modifications, while potentially enhancing antigen delivery through interaction with cell membranes. ELP micelles comprise ELP diblock copolymers that self-assemble above a critical micelle temperature. In this study, an amphiphilic ELP was conjugated to peptide "K", which forms a heterodimeric coiled-coil complex with peptide "E". Self-assembled "covalent" micelles containing ELP-OVA323 (i.e., model antigen OVA323 conjugated to ELP), "coiled-coil" micelles containing ELP-K/E-OVA323 and "hybrid" micelles containing ELP-K and ELP-OVA323 were shown to be monodisperse and spherical. Dendritic cells (DCs) were exposed to all micelle compositions, and T-cell proliferation was investigated. The presence of ELP-K enhanced micelle uptake and subsequent DC maturation, resulting in enhanced CD4+ T-cell proliferation, which makes ELPs with coiled coil-associated antigens a promising vaccine platform.


Asunto(s)
Polipéptidos Similares a Elastina , Micelas , Elastina/química , Péptidos/química , Antígenos , Activación de Linfocitos
12.
ChemSusChem ; 17(4): e202301349, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-37867146

RESUMEN

The uncoordinated lead cations are ubiquitous in perovskite films and severely affect the efficiency and stability of perovskite solar cells (PSCs). In this work, 15-crown-5 with various heteroatoms are connected to the organic semiconductor carbazole diphenylamine, and two new compounds, CDT-S and CDT-N, are developed to modify the Pb2+ defects in perovskite films through the anti-solvent method. Apart from the oxygen atoms, there are also N atoms on crown ether ring in CDT-N, and both S and N heteroatoms in CDT-S. The heteroatoms enhance the interaction between the crown ether-based semiconductors and the undercoordinated Pb2+ defect in perovskite. Particularly, the stronger interaction between S atoms and Pb2+ further enhances the defect passivation effect of CDT-S than CDT-N, thereby more effectively suppressing the non-radiative recombination of charge carriers. Finally, the efficiency of the device treated with CDT-S is up to 23.05 %. Moreover, the unencapsulated device based on CDT-S maintained 90.5 % of the initial efficiency after being stored under dark conditions for 1000 hours, demonstrating good long-term stability. Our work demonstrates that crown ethers are promising in perovskite solar cells, and the crown ether containing multiple heteroatoms could effectively improve both efficiency and stability of devices.

13.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 44-51, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38063119

RESUMEN

Traditional Chinese medicine (TCM) encompasses treatment strategies for diabetes, which is referred to as "Consumptive Thirsty" syndrome. Recently, there has been discovery regarding the mapping between TCM and signaling molecules, which has revealed a remarkable consistency between TCM and modern medicine from a molecular perspective. In this manuscript, we have summarized the etiology and treatment strategies for diabetes in TCM and have examined these strategies in the context of molecular mechanisms. Our review demonstrates that the targeting molecule of TCM for the treatment of diabetes is FoxO1, a transcription factor that plays a pivotal role in regulating gluconeogenesis and glycogenolysis. TCM ranks the development of diabetes into three stages and utilizes different herbal formulas to control FoxO1 accordingly. At Stage 1, TCM inhibits FoxO1 by lowering its expression in the lung. At Stage 2, TCM increases the expression of FoxO1 by suppressing its activity in the stomach. At Stage 3, TCM utilizes the famous herbal formula Liuwei Dihuang Pill to amplify the expression of FoxO1, and to enhance the concentrations of potassium, phosphorus, and Wnt, but to reduce the concentration of calcium. These TCM treatment strategies are in accordance with corresponding mechanisms in modern medicine.


Asunto(s)
Diabetes Mellitus , Medicamentos Herbarios Chinos , Proteína Forkhead Box O1 , Humanos , Diabetes Mellitus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos , Síndrome , Proteína Forkhead Box O1/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo
14.
BMC Pediatr ; 23(1): 636, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104124

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) remains a substantial public health safety concern drawing considerable attention in China and globally. The detection of HBV serological markers can enable the assessment of HBV infection and replication status in vivo and evaluate the body's protection against HBV. Therefore, this study aims to identify the epidemiological and clinical characteristics of HBV infection in children to prevent and control HBV infection in Wuhan areas. METHODS: We conducted an extensive retrospective cohort analysis of 115,029 individuals aged 0-18 years who underwent HBV serological markers detection for HBV infection in hospital between 2018 and 2021 using Electrochemiluminescence immunoassay. We generated descriptive statistics and analysed HBV infection's epidemiological and clinical characteristics between different sex and age groups. RESULTS: The overall positive detection rates of HBsAg, HBsAb, HBeAg, HBeAb, and HBcAb in all participants were 0.13%, 79.09%, 0.17%, 2.81%, and 5.82%, respectively. The positive rate of HBeAb and HBcAb in males was significantly lower than that in females (2.64% vs. 3.13%, 5.56% vs. 6.29%) (P < 0.05). Twenty-two distinct HBV serological expression patterns were revealed. Among them, 8 common expression patterns accounted for 99.63%, while the remaining 14 uncommon expression patterns were primarily observed in neonatal patients with HBV infection. There are no significant differences in serological patterns based on sex (P < 0.05). The overall HBV infection detection rate was 5.82% [range 5.68-5.95] and showed a declining yearly trend. The rate in females was higher than that in males 6.29% [6.05, 6.35] vs. 5.56% [5.39, 5.59]. The overall HBV diagnostic rate over 4 years was 0.20% [0.17, 0.22], and the rate declined yearly. The prevalence of acute infection was higher than that of other infection types before 2019, but the incidence of unclassified infection showed a significant upward trend after 2019. CONCLUSIONS: While the overall HBV infection detection rate in children has decreased year by year, the infection rate remains high in children under one year and between 4 and 18 years. This continued prevalence warrants heightened attention and vigilance.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Masculino , Recién Nacido , Femenino , Humanos , Niño , Estudios Retrospectivos , Antígenos de Superficie de la Hepatitis B , Hepatitis B/diagnóstico , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Anticuerpos contra la Hepatitis B
15.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 17-24, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38015513

RESUMEN

Ischemic cerebrovascular diseases pose significant challenges due to their high mortality, disability rates, and recurrence risk, imposing substantial societal and healthcare burdens. Current treatment modalities, including medication and surgical interventions, have limitations. This study explores the therapeutic potential of anisodine hydrobromide, a neuroprotective compound, with a focus on its interaction with muscarinic receptors (M1-M5) in cerebral ischemic diseases, employing a middle cerebral artery occlusion (MCAO) rat model, and microglial HM cells and astrocytes SVG12 as models. Immunohistochemistry comprehensively assessed M1-M5 receptor expression in cerebral arteries, hippocampus, and parenchymal tissues in MCAO rats before and after anisodine hydrobromide administration. Additionally, a hypoxia/reoxygenation (H/R) model validated our findings using SVG12 and HM cells. M receptor mechanisms under hypoxia, including calcium ion influx, reactive oxygen species (ROS) levels, and aspartate expression were explored. Anisodine hydrobromide effectively reduced exacerbated M1, M2, M4, and M5 receptor expression in hypoxia/reoxygenation (H/R)-treated brain tissues and M2 receptors in H/R-treated cells. Concentration-dependent inhibition of calcium ion influx and ROS levels was observed, elucidating its neuroprotective mechanisms. Under H/R conditions, HM cells exhibited decreased aspartate levels by anisodine hydrobromide, Atropine, and M2 inhibitor treatments. These findings shed light on the modulation of muscarinic receptors, particularly the M2 subtype, by anisodine hydrobromide in cerebral ischemia. The neuroprotective effects observed in this study highlight the promising clinical prospects of anisodine hydrobromide as a potential therapeutic agent for ischemic brain diseases, warranting further investigation into its mechanisms of action.


Asunto(s)
Ácido Aspártico , Calcio , Animales , Ratas , Especies Reactivas de Oxígeno , Infarto Cerebral , Receptores Muscarínicos , Hipoxia/tratamiento farmacológico
16.
ACS Nano ; 17(23): 23466-23477, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982378

RESUMEN

Heart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform. Yet, their delivery efficiency has been limited by their endosomal entrapment after endocytosis. Previously, we demonstrated that a pair of complementary coiled-coil peptides (CPE4/CPK4) triggered efficient fusion between liposomes and cells, bypassing endosomal entrapment and resulting in efficient drug delivery. Here, we modified mRNA-LNPs with the fusogenic coiled-coil peptides and demonstrated efficient mRNA delivery to difficult-to-transfect induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). As proof of in vivo applicability of these fusogenic LNPs, local administration via intramyocardial injection led to significantly enhanced mRNA delivery and concomitant protein expression. This represents the successful application of the fusogenic coiled-coil peptides to improve mRNA-LNPs transfection in the heart and provides the potential for the advanced development of effective regenerative therapies for heart failure.


Asunto(s)
Insuficiencia Cardíaca , Nanopartículas , Humanos , Liposomas , ARN Mensajero/genética , Péptidos
17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 625-631, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37666751

RESUMEN

Organoids are three-dimensional structures formed by self-organizing growth of cells in vitro, which own many structures and functions similar with those of corresponding in vivo organs. Although the organoid culture technologies are rapidly developed and the original cells are abundant, the organoid cultured by current technologies are rather different with the real organs, which limits their application. The major challenges of organoid cultures are the immature tissue structure and restricted growth, both of which are caused by poor functional vasculature. Therefore, how to develop the vascularization of organoids has become an urgent problem. We presently reviewed the progresses on the original cells of organoids and the current methods to develop organoids vascularization, which provide clues to solve the above-mentioned problems.


Asunto(s)
Neovascularización Patológica , Organoides , Humanos , Tecnología
18.
Front Oncol ; 13: 1175010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37706180

RESUMEN

Purpose: This study aimed to explore the efficacy of the computed tomography (CT) radiomics model for predicting the Ki-67 proliferation index (PI) of pure-solid non-small cell lung cancer (NSCLC). Materials and methods: This retrospective study included pure-solid NSCLC patients from five centers. The radiomics features were extracted from thin-slice, non-enhanced CT images of the chest. The minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to reduce and select radiomics features. Logistic regression analysis was employed to build predictive models to determine Ki-67-high and Ki-67-low expression levels. Three prediction models were established: the clinical model, the radiomics model, and the nomogram model combining the radiomics signature and clinical features. The prediction efficiency of different models was evaluated using the area under the curve (AUC). Results: A total of 211 NSCLC patients with pure-solid nodules or masses were included in the study (N=117 for the training cohort, N=49 for the internal validation cohort, and N=45 for the external validation cohort). The AUC values for the clinical models in the training, internal validation, and external validation cohorts were 0.73 (95% CI: 0.64-0.82), 0.75 (95% CI:0.62-0.89), and 0.72 (95% CI: 0.57-0.86), respectively. The radiomics models showed good predictive ability in diagnosing Ki-67 expression levels in the training cohort (AUC, 0.81 [95% CI: 0.73-0.89]), internal validation cohort (AUC, 0.81 [95% CI: 0.69-0.93]) and external validation cohort (AUC, 0.78 [95% CI: 0.64-0.91]). Compared to the clinical and radiomics models, the nomogram combining both radiomics signatures and clinical features had relatively better diagnostic performance in all three cohorts, with the AUC of 0.83 (95% CI: 0.76-0.90), 0.83 (95% CI: 0.71-0.94), and 0.81 (95% CI: 0.68-0.93), respectively. Conclusion: The nomogram combining the radiomics signature and clinical features may be a potential non-invasive method for predicting Ki-67 expression levels in patients with pure-solid NSCLC.

19.
Nanoscale ; 15(37): 15206-15218, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37671560

RESUMEN

Gene delivery has great potential in modulating protein expression in specific cells to treat diseases. Such therapeutic gene delivery demands sufficient cellular internalization and endosomal escape. Of various nonviral nucleic acid delivery systems, lipid nanoparticles (LNPs) are the most advanced, but still, are very inefficient as the majority are unable to escape from endosomes/lysosomes. Here, we develop a highly efficient gene delivery system using fusogenic coiled-coil peptides. We modified LNPs, carrying EGFP-mRNA, and cells with complementary coiled-coil lipopeptides. Coiled-coil formation between these lipopeptides induced fast nucleic acid uptake and enhanced GFP expression. The cellular uptake of coiled-coil modified LNPs is likely driven by membrane fusion thereby omitting typical endocytosis pathways. This direct cytosolic delivery circumvents the problems commonly observed with the limited endosomal escape of mRNA. Therefore fusogenic coiled-coil peptide modification of existing LNP formulations to enhance nucleic acid delivery efficiency could be beneficial for several gene therapy applications.

20.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(5): 571-575, 2023 Sep 30.
Artículo en Chino | MEDLINE | ID: mdl-37753900

RESUMEN

Objective To investigate, analyze, and evaluate the risk data associated with the clinical use of absorbable sutures by retrieving and summarizing information from the databases of the US FDA and CNKI, as well as the adverse event reports related to absorbable sutures from January 2019 to October 2022 within Zhejiang province. The adverse event reports are obtained from both incident locations and monitoring organizations affiliated with the registrant. The aim is to identify the main risk factors associated with the clinical use of absorbable sutures. The key risk factors are potential product quality defects, product design and material selection, clinical selection and application, and postoperative recovery care including patient's self-care. Risk control strategies are further proposed to reduce or minimize the risk of adverse events caused by this product.


Asunto(s)
Suturas , Humanos , Suturas/efectos adversos , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...