Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(33): e2302436, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37202898

RESUMEN

Ferroelectricity has been separately found in numerous solid and liquid crystal materials since its first discovery in 1920. However, a single material with biferroelectricity existing in both solid and liquid crystal phases is very rare, and the regulation of biferroelectricity has never been studied. Here, solid-liquid crystal biphasic ferroelectrics, cholestanyl 4-X-benzoate (4X-CB, X = Cl, Br, and I), which exhibits biferroelectricity in both the solid and liquid crystal phases, is presented. It is noted that the ferroelectric liquid crystal phase of 4X-CB is a cholesteric one, distinct from the ordinary chiral smectic ferroelectric liquid crystal phase. Moreover, 4X-CB shows solid-solid and solid-liquid crystal phase transitions, of which the transition temperatures gradually increase from Cl to Br to I substitution. The spontaneous polarization (Ps ) of 4X-CB in both solid and liquid crystal phases can also be regulated by different halogen substitutions, where the 4Br-CB has the optimal Ps because of the larger molecular dipole moment. To the authors' knowledge, 4X-CB is the first ferroelectric with tunable biferroelectricity, which offers a feasible case for the performance optimization of solid-liquid crystal biphasic ferroelectrics.

2.
Nat Commun ; 13(1): 6150, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258026

RESUMEN

Ferroelectricity, existing in either solid crystals or liquid crystals, gained widespread attention from science and industry for over a century. However, ferroelectricity has never been observed in both solid and liquid crystal phases of a material simultaneously. Inorganic ferroelectrics that dominate the market do not have liquid crystal phases because of their completely rigid structure caused by intrinsic chemical bonds. We report a ferroelectric homochiral cholesterol derivative, ß-sitosteryl 4-iodocinnamate, where both solid and liquid crystal phases can exhibit the behavior of polarization switching as determined by polarization-voltage hysteresis loops and piezoresponse force microscopy measurements. The unique long molecular chain, sterol structure, and homochirality of ß-sitosteryl 4-iodocinnamate molecules enable the formation of polar crystal structures with point group 2 in solid crystal phases, and promote the layered and helical structure in the liquid crystal phase with vertical polarization. Our findings demonstrate a compound that can show the biferroelectricity in both solid and liquid crystal phases, which would inspire further exploration of the interplay between solid and liquid crystal ferroelectric phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...