Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Cell Prolif ; : e13658, 2024 May 27.
Article En | MEDLINE | ID: mdl-38803032

Spinal cord injury (SCI) leads to secondary neuronal death, which severely impedes recovery of motor function. Therefore, prevention of neuronal cell death after SCI is an important strategy. Ferroptosis, a new form of cell death discovered in recent years, has been shown to be involved in the regulation of SCI. However, the role and potential mechanisms of ferroptosis in secondary SCI are not fully understood. In this study, we report that the E3 ubiquitin ligase Syvn1 suppresses ferroptosis and promotes functional recovery from SCI in vitro and in vivo. Mechanistically, screened with bioinformatics, immunoprecipitation, and mass spectrometry, we identified Stat3, a transcription factor that induces the expression of the ferroptosis inhibitor Gpx4, as a substrate of Syvn1. Furthermore, we identified neurons as the primary cellular source of Syvn1 signalling. Moreover, we determined the binding domains of Syvn1 and Stat3 in HEK 293 T cells using full-length proteins and a series of truncated Flag-tagged and Myc-tagged fragments. Furthermore, we created the cell and animal models with silencing or overexpression of Syvn1 and Stat3 and found that Syvn1 inhibits neuronal ferroptosis by stabilizing Stat3, which subsequently activates the ferroptosis regulator Gpx4 in SCI. In summary, the Syvn1-mediated Stat3/Gpx4 signalling axis attenuates neuronal ferroptosis, reduces neuronal death, and promotes SCI repair. Therefore, our findings provide potential new targets and intervention strategies for the treatment of SCI.

3.
ACS Appl Mater Interfaces ; 16(11): 14038-14046, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38445951

The interplay between flexoelectric and optoelectronic characteristics provides a paradigm for studying emerging phenomena in various 2D materials. However, an effective way to induce a large and tunable strain gradient in 2D devices remains to be exploited. Herein, we propose a strategy to induce large flexoelectric effect in 2D ferroelectric CuInP2S6 by constructing a 1D-2D mixed-dimensional heterostructure. The strong flexoelectric effect is induced by enormous strain gradient up to 4.2 × 106 m-1 resulting from the underlying ZnO nanowires, which is further confirmed by the asymmetric coercive field and the red-shift in the absorption edge. The induced flexoelectric polarization efficiently boosts the self-powered photodetection performance. In addition, the improved photoresponse has a good correlation with the induced strain gradient, showing a consistent size-dependent flexoelectric effect. The mechanism of flexoelectric and optoelectronic coupling is proposed based on the Landau-Ginzburg-Devonshire double-well model, supported by density functional theory (DFT) calculations. This work provides a brand-new method to induce a strong flexoelectric effect in 2D materials, which is not restricted to crystal symmetry and thus offers unprecedented opportunities for state-of-the-art 2D devices.

4.
Adv Sci (Weinh) ; 11(16): e2306842, 2024 Apr.
Article En | MEDLINE | ID: mdl-38353512

The development of magnetocaloric materials with a significantly enhanced volumetric cooling capability is highly desirable for the application of adiabatic demagnetization refrigerators in confined spatial environments. Here, the thermodynamic characteristics of a magnetically frustrated spin-7/2 Gd9.33[SiO4]6O2 is presented, which exhibits strongly correlated spin disorder below ≈1.5 K. A quantitative model is proposed to describe the magnetization results by incorporating nearest-neighbor Heisenberg antiferromagnetic and dipolar interactions. Remarkably, the recorded magnetocaloric responses are unprecedentedly large and applicable below 1.0 K. It is proposed that the S = 7/2 spin liquids serve as versatile platforms for investigating high-performance magnetocaloric materials in the sub-kelvin regime, particularly those exhibiting a superior cooling power per unit volume.

5.
Environ Sci Technol ; 58(8): 3665-3676, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38358856

Toxicological studies have indicated that exposure to chlorinated paraffins (CPs) may disrupt intracellular glucose and energy metabolism. However, limited information exists regarding the impact of human CP exposure on glucose homeostasis and its potential association with an increased risk of developing gestational diabetes mellitus (GDM). Here, we conducted a prospective study with a nested case-control design to evaluate the link between short- and medium-chain CP (SCCPs and MCCPs) exposures during pregnancy and the risk of GDM. Serum samples from 102 GDM-diagnosed pregnant women and 204 healthy controls were collected in Hangzhou, Eastern China. The median (interquartile range, IQR) concentration of SCCPs was 161 (127, 236) ng/mL in the GDM group compared to 127 (96.9, 176) ng/mL in the non-GDM group (p < 0.01). For MCCPs, the GDM group had a median concentration of 144 (117, 174) ng/mL, while the control group was 114 (78.1, 162) ng/mL (p < 0.01). Compared to the lowest quartile as the reference, the adjusted odds ratios (ORs) of GDM were 7.07 (95% CI: 2.87, 17.40) and 3.34 (95% CI: 1.48, 7.53) in the highest quartile of ∑SCCP and ∑MCCP levels, respectively, with MCCPs demonstrating an inverted U-shaped association with GDM. Weighted quantile sum regression evaluated the joint effects of all CPs on GDM and glucose homeostasis. Among all CP congeners, C13H23Cl5 and C10H16Cl6 were the crucial variables driving the positive association with the GDM risk. Our results demonstrated a significant positive association between CP concentration in maternal serum and GDM risk, and exposure to SCCPs and MCCPs may disturb maternal glucose homeostasis. These findings contribute to a better understanding of the health risks of CP exposure and the role of environmental contaminants in the pathogenesis of GDM.


Diabetes, Gestational , Hydrocarbons, Chlorinated , Female , Pregnancy , Humans , Diabetes, Gestational/chemically induced , Diabetes, Gestational/epidemiology , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Case-Control Studies , Prospective Studies , Environmental Monitoring/methods , China/epidemiology , Glucose
6.
Small ; 20(2): e2305283, 2024 Jan.
Article En | MEDLINE | ID: mdl-37661577

Increasing the sulfur cathode load is an important method for promoting the commercialization of lithium-sulfur batteries. However, there is a common problem of overcharging in high-loading experiments, which is rarely reported. In this work, it is believed that an insulating layer of S8 forms on the current collector surface, hindering electron exchange with polysulfides. Continuous external current input during layer formation can cause irreversible electrode changes and overcharging. The general solution is to provide nucleation centers with adsorption sites to promote the 3D growth of the insulated S8 , thus avoiding overcharging. In this work,  a solution is proposed by providing nucleation centers by gallium nitrate, by regulating the 3D growth of S8 away from the surface of the current collector to avoid overcharging and by improving battery performance.

7.
Small ; 20(4): e2306516, 2024 Jan.
Article En | MEDLINE | ID: mdl-37715101

Antimony selenide (Sb2 Se3 ) is a highly promising photovoltaic material thanks to its outstanding optoelectronic properties, as well as its cost-effective and eco-friendly merits. However, toxic CdS is widely used as an electron transport layer (ETL) in efficient Sb2 Se3 solar cells, which largely limit their development toward market commercialization. Herein, an effective green Cd-free ETL of SnOx is introduced and deposited by atomic layer deposition method. Additionally, an important post-annealing treatment is designed to further optimize the functional layers and the heterojunction interface properties. Such engineering strategy can optimize SnOx ETL with higher nano-crystallinity, higher carrier density, and less defect groups, modify Sb2 Se3 /SnOx heterojunction with better interface performance and much desirable "spike-like" band alignment, and also improve the Sb2 Se3 light absorber layer quality with passivated bulk defects and prolonged carrier lifetime, and therefore to enhance carrier separation and transport while suppressing non-radiative recombination. Finally, the as-fabricated Cd-free Mo/Sb2 Se3 /SnOx /ITO/Ag thin-film solar cell exhibits a stimulating efficiency of 7.39%, contributing a record value for Cd-free substrate structured Sb2 Se3 solar cells reported to date. This work provides a viable strategy for developing and broadening practical applications of environmental-friendly Sb2 Se3 photovoltaic devices.

8.
Small ; 20(20): e2308908, 2024 May.
Article En | MEDLINE | ID: mdl-38105418

The environmental deterioration caused by dye wastewater discharge has received considerable attention in recent decades. One of the most promising approaches to addressing the aforementioned environmental issue is the development of photocatalysts with high solar energy consumption efficiency for the treatment of dye-contaminated water. In this study, a novel low-cost π-π biomass-derived black carbon modified g-C3N4 coupled FeIn2S4 composite (i.e., FeInS/BC-CN) photocatalyst is successfully designed and fabricated that reveals significantly improved photocatalytic performance for the degradation of Eosin Yellow (EY) dye in aqueous solution. Under dark and subsequent visible light irradiation, the amount optimized composite reveals 99% removal performance for EY dye, almost three-fold compared to that of the pristine FeInS and BC-CN counterparts. Further, it is confirmed by means of the electron spin resonance spectrometry, quenching experiments, and density functional theory (DFT) calculations, that the hydroxyl radicals (•OH) and superoxide radicals (•O2 -) are the dominant oxidation species involved in the degradation process of EY dye. In addition, a systematic photocatalytic degradation route is proposed based on the resultant degradation intermediates detectedduring liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. This work provides an innovative idea for the development of advanced photocatalysts to mitigate water pollution.

9.
Exp Neurol ; 371: 114585, 2024 01.
Article En | MEDLINE | ID: mdl-37884185

AIMS: Osteopontin (OPN) has demonstrated neuroprotective effects in various stroke models. Its role in neuroinflammation after brain injury remains to be elucidated. This study aims to clarify the effect of OPN on neuroinflammation, particularly on the functional states of microglia after subarachnoid hemorrhage (SAH). METHODS: 77 rats were randomly divided into the following groups: Sham, SAH 24 h, SAH + rOPN, SAH + Vehicle (PBS), SAH + OPN siRNA, and SAH + Scr siRNA, SAH + rOPN+Fib-14 and SAH + rOPN+DMSO. Modified Garcia and beam balance tests were used to evaluate neurobehavioral outcomes. Semi-quantitative immunofluorescence staining was performed to measure expression of myeloperoxidase (MPO) and microglia activation state markers CD16, CD206 after SAH and recombinant OPN treatment. The quantification of microglia activation and functional markers CD16, CD206, TNF-α and IL-10 were further evaluated using Western-blotting. RESULTS: Nasal administration of rOPN improved neurological dysfunction, attenuated neutrophil infiltration, and decreased expression of phenotypic and functional markers of pro-inflammatory microglia CD16 and TNF-α. It also promoted an anti-inflammatory microglial state, as evidenced by increased expression of CD206 and IL-10. Furthermore, after blocking the phosphorylation of FAK signaling, the effects of rOPN on microglial activation states were partially reversed. The downstream pathways of STAT3 and NF-κB also exhibited consistent changes, suggesting the involvement of the STAT3 and NF-κB pathways in OPN's modulation of microglial activation via integrin-FAK signaling. CONCLUSION: OPN attenuates inflammatory responses after SAH by promoting an anti-inflammatory microglial state, potentially mediated through the integrin-FAK-STAT3 and NF-κB signaling pathways.


Osteopontin , Subarachnoid Hemorrhage , Rats , Animals , Osteopontin/therapeutic use , Osteopontin/metabolism , Osteopontin/pharmacology , Rats, Sprague-Dawley , NF-kappa B/metabolism , Interleukin-10 , Microglia/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Anti-Inflammatory Agents/pharmacology , Integrins/metabolism , Integrins/therapeutic use , RNA, Small Interfering/pharmacology , Disease Models, Animal
10.
RSC Adv ; 13(48): 33588-33594, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-38020035

Two-dimensional CuCrP2S6 possesses significant potential for low-power non-volatile devices owing to its multiferroic properties. Nonetheless, comprehensive investigations regarding the modulation of CuCrP2S6 polarization for enhancing semiconductor photodetection capabilities and its potential applications in ferroelectric non-volatile devices are still relatively scarce. In this study, we present a novel, non-volatile, tunable photodetector engineered through the integration of a ferroelectric heterostructure comprising CuCrP2S6 and InSe. Our findings reveal that distinct ferroelectric polarization states of CuCrP2S6 exert varying modulation effects on the InSe photodetection performance. Notably, optimized results give a responsivity of 1839 A W-1 and a detectivity of 1.9 × 1012 Jones at a 300 nm wavelength, featuring a substantial 20.7-fold difference in responsivity between the two polarization states. This investigation underscores the immense potential of CuCrP2S6 in the development of non-volatile, multi-state optoelectronic devices.

11.
Adv Sci (Weinh) ; 10(16): e2207506, 2023 Jun.
Article En | MEDLINE | ID: mdl-36995070

Growing concentration on the novel information processing technology and low-cost, flexible materials make the spintronics and organic materials appealing for the future interdisciplinary investigations. Organic spintronics, in this context, has arisen and witnessed great advances during the past two decades owing to the continuous innovative exploitation of the charge-contained spin polarized current. Albeit with such inspiring facts, charge-absent spin angular momentum flow, namely pure spin currents (PSCs) are less probed in organic functional solids. In this review, the past exploring journey of PSC phenomenon in organic materials are retrospected, including non-magnetic semiconductors and molecular magnets. Starting with the basic concepts and the generation mechanism for PSC, the representative experimental observations of PSC in the organic-based networks are subsequently demonstrated and summarized, by accompanying explicit discussion over the propagating mechanism of net spin itself in the organic media. Finally, future perspectives on PSC in organic materials are illustrated mainly from the material point of view, including single molecule magnets, complexes for the organic ligands framework as well as the lanthanide metal complexes, organic radicals, and the emerging 2D organic magnets.

12.
Inorg Chem ; 62(13): 5282-5291, 2023 Apr 03.
Article En | MEDLINE | ID: mdl-36943137

Searching for working refrigerant materials is the key element in the design of magnetic cooling devices. Herein, we report on the thermodynamic and magnetocaloric parameters of an X1 phase oxyorthosilicate, Gd2SiO5, by field-dependent static magnetization and specific heat measurements. An overall correlation strength of |J|S2 ≈ 3.4 K is derived via the mean-field estimate, with antiferromagnetic correlations between the ferromagnetically coupled Gd-Gd layers. The magnetic entropy change -ΔSm is quite impressive, reaches 0.40 J K-1 cm-3 (58.5 J K-1 kg-1) at T = 2.7 K, with the largest adiabatic temperature change Tad = 23.2 K for a field change of 8.9 T. At T = 20 K, the lattice entropy SL is small enough compared to the magnetic entropy Sm, Sm/SL = 21.3, which warrants its potential in 2 -20 K cryocoolers with both the Stirling and Carnot cycles. Though with relatively large exchange interactions, the layered A-type spin arrangement ultimately enhances the magnetocaloric coupling, raising the possibilities of designing magnetic refrigerants with a high ratio of cooling capacity to volume.

13.
Nanoscale ; 15(14): 6732-6737, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36939614

Improving the interfacial thermal conductance (ITC) is very important for heat dissipation in microelectronic and optoelectronic devices. In this work, taking GaN-AlN contact as an example, we demonstrated a new mechanism to enhance the interfacial thermal conductance using nano-phononic metamaterials. First, how a superlattice affects the ITC is investigated, and it is found that with decreasing superlattice periodic length, the ITC first decreases and then increases, because of the coherent phonon interference effect. However, although constructing a superlattice is effective for tuning the ITC, it cannot enhance the ITC. We suggest that the ITC can be enhanced by 9% through constructing an interfacial nano phononic metamaterial, which is contributed by the additional phonon transport channels for high-frequency phonons with a wide incidence-angle range. These results not only establish a deep understanding of the fundamental physics of the interfacial thermal conductance, but also provide a robust and scalable mechanism, which provides a degree of freedom for efficient thermal management.

14.
Nat Commun ; 14(1): 840, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36792610

Multiferroic materials have great potential in non-volatile devices for low-power and ultra-high density information storage, owing to their unique characteristic of coexisting ferroelectric and ferromagnetic orders. The effective manipulation of their intrinsic anisotropy makes it promising to control multiple degrees of the storage "medium". Here, we have discovered intriguing in-plane electrical and magnetic anisotropies in van der Waals (vdW) multiferroic CuCrP2S6. The uniaxial anisotropies of current rectifications, magnetic properties and magnon modes are demonstrated and manipulated by electric direction/polarity, temperature variation and magnetic field. More important, we have discovered the spin-flop transition corresponding to specific resonance modes, and determined the anisotropy parameters by consistent model fittings and theoretical calculations. Our work provides in-depth investigation and quantitative analysis of electrical and magnetic anisotropies with the same easy axis in vdW multiferroics, which will stimulate potential device applications of artificial bionic synapses, multi-terminal spintronic chips and magnetoelectric devices.

15.
Small ; 19(16): e2205347, 2023 Apr.
Article En | MEDLINE | ID: mdl-36634972

Ferroelectric (FE) materials, including BiFeO3 , P(VDF-TrFE), and CuInP2 S6 , are a type of dielectric material with a unique, spontaneous electric polarization that can be reversed by applying an external electric field. The combination of FE and low-dimensional materials produces synergies, sparking significant research interest in solar cells, photodetectors (PDs), nonvolatile memory, and so on. The fundamental aspects of FE materials, including the origin of FE polarization, extrinsic FE materials, and FE polarization quantification are first discussed. Next, the state-of-the-art of FE-based optoelectronic devices is focused. How FE materials affect the energy band of channel materials and how device structures influence PD performance are also summarized. Finally, the future directions of this rapidly growing field are discussed.

16.
J Phys Condens Matter ; 35(7)2022 Dec 15.
Article En | MEDLINE | ID: mdl-36541472

The rapid development of synthesis and fabrication techniques has opened up a research upsurge in two-dimensional (2D) material heterostructures, which have received extensive attention due to their superior physical and chemical properties. Currently, thermoelectric energy conversion is an effective means to deal with the energy crisis and increasingly serious environmental pollution. Therefore, an in-depth understanding of thermoelectric transport properties in 2D heterostructures is crucial for the development of micro-nano energy devices. In this review, the recent progress of 2D heterostructures for thermoelectric applications is summarized in detail. Firstly, we systematically introduce diverse theoretical simulations and experimental measurements of the thermoelectric properties of 2D heterostructures. Then, the thermoelectric applications and performance regulation of several common 2D materials, as well as in-plane heterostructures and van der Waals heterostructures, are also discussed. Finally, the challenges of improving the thermoelectric performance of 2D heterostructures materials are summarized, and related prospects are described.

17.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Article En | MEDLINE | ID: mdl-36234488

The ferroelectric field effect transistor (Fe-FET) is considered to be one of the most important low-power and high-performance devices. It is promising to combine a ferroelectric field effect with a photodetector to improve the photodetection performance. This study proposes a strategy for ZnO ultraviolet (UV) photodetectors regulated by a ferroelectric gate. The ZnO nanowire (NW) UV photodetector was tuned by a 2D CuInP2S6 (CIPS) ferroelectric gate, which decreased the dark current and enhanced the responsivity and detectivity to 2.40 × 104 A/W and 7.17 × 1011 Jones, respectively. This strategy was also applied to a ZnO film UV photodetector that was tuned by a P(VDF-TrFE) ferroelectric gate. Lower power consumption and higher performance can be enabled by ferroelectric tuning of ZnO ultraviolet photodetectors, providing new inspiration for the fabrication of high-performance photodetectors.

18.
J Am Chem Soc ; 144(37): 17075-17085, 2022 Sep 21.
Article En | MEDLINE | ID: mdl-36069726

Selective hydrogenation with high efficiency under ambient conditions remains a long-standing challenge. Here, a yolk-shell nanostructured catalyst, PdAg@ZIF-8, featuring plasmonic PdAg nanocages encompassed by a metal-organic framework (MOF, namely, ZIF-8) shell, has been rationally fabricated. PdAg@ZIF-8 achieves selective (97.5%) hydrogenation of nitrostyrene to vinylaniline with complete conversion at ambient temperature under visible light irradiation. The photothermal effect of Ag, together with the substrate enrichment effect of the catalyst, improves the Pd activity. The near-field enhancement effect from plasmonic Ag and optimized Pd electronic state by Ag alloying promote selective adsorption of the -NO2 group and therefore catalytic selectivity. Remarkably, the unique yolk-shell nanostructure not only facilitates access to PdAg cores and protects them from aggregation but also benefits substrate enrichment and preferential -NO2 adsorption under light irradiation, the latter two of which surpass the core-shell counterpart, giving rise to enhanced activity, selectivity, and recyclability.

19.
Nanoscale ; 14(34): 12447-12454, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-35979926

Moiré superlattices offer a fascinating platform for designing the properties of optical excitons. The moiré pattern can generate an ordered exciton array in space, making it possible for topological excitons and quantum emitters. Recently, evidence of moiré excitons in the twisted heterostructures of TMDs has been widely reported. However, to date, the capture and investigation of moiré excitons in the twisted homostructure (T-HS) remain elusive. Here, we report the observation of moiré excitons in the WS2/WS2 T-HS with a twist angle of about 1.5°. The PL spectrum of the T-HS region shows many small peaks with nearly constant peak spacing, which is attributed to the reconstructed moiré potential generated by the reconstructed moiré pattern to confine the intralayer excitons, thereby forming an ordered moiré exciton array. Furthermore, we have studied the influence of temperature and laser power on the moiré excitons as well as the valley polarization of the moiré excitons. Our results provide a promising prospect for further exploration of artificial excitonic crystals and quantum emitters of TMD moiré patterns.

20.
Chemistry ; 28(64): e202201705, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-35997545

Two-dimensional conductive metal-organic frameworks (2D c-MOFs) are a family of highly tunable and electrically conducting materials that can be utilized in optoelectronics. A major issue of 2D c-MOFs for photodetection is their poor charge separation and recombination dynamics upon illumination. This study demonstrates a Cu3 (HHTP)2 /ZnO type-II heterojunction ultraviolet (UV) photodetector fabricated by layer-by-layer (LbL) deposition, in which the charge separation of photogenerated carriers is enhanced. At optimized MOF layer cycles, the device achieves a responsivity of 78.2 A/W and detectivity of 3.8×109 Jones at 1 V. Particularly, the device can be operated in the self-powered mode with an ultrafast response time of 70 µs, which is the record value for MOF-based photodetectors. In addition, even after 1000-time bending of 180°, the flexible device maintains stable performance. This flexible MOF-based UV photodetector with anti-fatigue and anti-bending properties provides strong implication to wearable optoelectronics.

...