Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
ACS Infect Dis ; 10(6): 1980-1989, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38703116

RESUMEN

In this study, we designed and synthesized a series of pleuromutilin derivatives containing thiazole. The in vitro antimicrobial efficacy of these synthesized compounds was examined by using four strains. Compared with tiamulin (MIC = 0.25 µg/mL), compound 14 exhibited potency in inhibiting MRSA growth (MIC = 0.0625 µg/mL) in these derivatives. Meanwhile, the time-killing kinetics further demonstrated that compound 14 could efficiently inhibit the MRSA growth. After exposure at 4 × MIC, the postantibiotic effect (PAE) of compound 14 was 1.29 h. Additionally, in thigh-infected mice, compound 14 exhibited a more potent antibacterial efficacy (-1.78 ± 0.28 log10 CFU/g) in reducing MRSA load compared to tiamulin (-1.21 ± 0.23 log10 CFU/g). Moreover, the MTT assay on RAW 264.7 cells demonstrated that compound 14 (8 µg/mL) had no significant cytotoxicity. Docking studies indicated the strong affinity of compound 14 toward the 50S ribosomal subunit, with a binding free energy of -9.63 kcal/mol. Taken together, it could be deduced that compound 14 was a promising candidate for treating MRSA infections.


Asunto(s)
Antibacterianos , Diterpenos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pleuromutilinas , Compuestos Policíclicos , Infecciones Estafilocócicas , Tiazoles , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/química , Diterpenos/farmacología , Diterpenos/química , Diterpenos/síntesis química , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Infecciones Estafilocócicas/tratamiento farmacológico , Diseño de Fármacos , Células RAW 264.7
2.
Front Vet Sci ; 11: 1362292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756506

RESUMEN

The economic impact of necrotizing enteritis (NE) resulting from Clostridium perfringens infection has been significant within the broiler industry. This study primarily investigated the antibacterial efficacy of hexahydrocolupulone against C. perfringens, and its pharmacokinetics within the ileal contents of broiler chickens. Additionally, a dosing regimen was developed based on the pharmacokinetic/pharmacodynamic (PK/PD) model specific to broiler chickens. Results of the study indicated that the minimum inhibitory concentration (MIC) of hexahydrocolupulone against C. perfringens ranged from 2 mg/L to 16 mg/L in MH broth. However, in ileal content, the MIC ranged from 8 mg/L to 64 mg/L. The mutation prevention concentration (MPC) in the culture medium was found to be 128 mg/L. After oral administration of hexahydrocolupulone at a single dosage of 10-40 mg/kg bodyweight, the peak concentration (Cmax), maximum concentration time (Tmax), and area under the concentration-time curve (AUC) in ileal content of broiler chickens were 291.42-3519.50 µg/g, 1-1.5 h, and 478.99-3121.41 µg h/g, respectively. By integrating the in vivo PK and ex vivo PD data, the AUC0-24h/MIC values required for achieving bacteriostatic, bactericidal, and bacterial eradication effects were determined to be 36.79, 52.67, and 62.71 h, respectively. A dosage regimen of 32.9 mg/kg at 24 h intervals for a duration of 3 days would yield therapeutic efficacy in broiler chickens against C. perfringens, provided that the MIC below 4 mg/L.

3.
Antibiotics (Basel) ; 13(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786174

RESUMEN

The P1 phage has garnered attention as a carrier of antibiotic resistance genes (ARGs) in Enterobacteriaceae. However, the transferability of ARGs by P1-like phages carrying ARGs, in addition to the mechanism underlying ARG acquisition, remain largely unknown. In this study, we elucidated the biological characteristics, the induction and transmission abilities, and the acquisition mechanism of the blaCTX-M-27 gene in the P1 phage. The P1-CTX phage exhibited distinct lytic plaques and possessed a complete head and tail structure. Additionally, the P1-CTX phage was induced successfully under various conditions, including UV exposure, heat treatment at 42 °C, and subinhibitory concentrations (sub-MICs) of antibiotics. Moreover, the P1-CTX phage could mobilize the blaCTX-M-27 gene into three strains of Escherichia coli (E. coli) and the following seven different serotypes of Salmonella: Rissen, Derby, Kentucky, Typhimurium, Cerro, Senftenberg, and Muenster. The mechanism underlying ARG acquisition by the P1-CTX phage involved Tn1721 transposition-mediated movement of blaCTX-M-27 into the ref and mat genes within its genome. To our knowledge, this is the first report documenting the dynamic processes of ARG acquisition by a phage. Furthermore, this study enriches the research on the mechanism underlying the phage acquisition of drug resistance genes and provides a basis for determining the risk of drug resistance during phage transmission.

4.
Pathogens ; 13(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38787239

RESUMEN

Although carbapenems have not been approved for animal use, carbapenem-resistant Escherichia coli (CREC) strains are increasingly being detected in food-producing animals, posing a significant public health risk. However, the epidemiological characteristics of CREC isolates in yellow-feather broiler farms remain unclear. We comprehensively investigated the genetic features of carbapenem-resistance genes among E. coli isolates recovered from a yellow-feather broiler farm in Guangdong province, China. Among the 172 isolates, 88 (51.2%) were recovered from chicken feces (88.5%, 54/61), the farm environment (51.1%, 24/47), and specimens of dead chickens (15.6%, 41/64). All CREC isolates were positive for the blaNDM-5 gene and negative for other carbapenem-resistance genes. Among 40 randomly selected isolates subjected to whole-genome sequencing, 10 belonged to distinct sequence types (STs), with ST167 (n = 12) being the most prevalent across different sources, suggesting that the dissemination of blaNDM-5 was mainly due to horizontal and clonal transmission. Plasmid analysis indicated that IncX3, IncHI2, and IncR-X1-X3 hybrid plasmids were responsible for the rapid transmission of the blaNDM-5 gene, and the genetic surrounding of blaNDM-5 contained a common mobile element of the genetic fragment designated "IS5-△ISAba125-blaNDM-5-bleMBL-trpF-dsbC". These findings demonstrate a critical role of multiple plasmid replicons in the dissemination of blaNDM-5 and carbapenem resistance.

5.
Front Pharmacol ; 15: 1363441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576480

RESUMEN

Background: The rapid spread of bacteria with plasmid-mediated resistance to antibiotics poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Methods: Synergistic activity of the FDA-approved agent oxethazine combined with colistin was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of their combination of oxethazine and colistin was explored by fluorescent dye, scanning electron microscopy (SEM) and LC-MS/MS. The synergistic efficacy was evaluated in vivo by the Galleria mellonella and mouse sepsis models. Results: In this study, we found that oxethazine could effectively enhance the antibacterial activity of colistin against both mcr-positive and -negative pathogens, and mechanistic assays revealed that oxethazine could improve the ability of colistin to destruct bacterial outer membrane and cytoplasmic membrane permeability. In addition, their combination triggered the accumulation of reactive oxygen species causing additional damage to the membrane structure resulting in cell death. Furthermore, oxethazine significantly enhanced the therapeutic efficacy of colistin in two animal models. Conclusion: These results suggested that oxethazine, as a promising antibiotic adjuvant, can effectively enhance colistin activity, providing a potential strategy for treating multidrug-resistant bacteria.

6.
Antibiotics (Basel) ; 13(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38666997

RESUMEN

The primary determinant of human health is undoubtedly safe food [...].

7.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397028

RESUMEN

The emergence of plasmid-mediated colistin resistance threatens the efficacy of colistin as a last-resort antibiotic used to treat infection caused by Gram-negative bacteria (GNB). Given the shortage of new antibiotics, the discovery of adjuvants to existing antibiotics is a promising strategy to combat infections caused by multidrug-resistant (MDR) GNB. This study was designed to investigate the potential synergistic antibacterial activity of bavachin, a bioactive compound extracted from the Psoralea Fructus, combined with colistin against MDR GNB. Herein, the synergistic efficacy in vitro and the therapeutic efficacy of colistin combined with bavachin in vivo were evaluated. The synergistic mechanism was detected by fluorescent probe and the transcript levels of mcr-1. Bavachin combined with colistin showed an excellent synergistic activity against GNB, as the FICI ≤ 0.5. In contrast to colistin alone, combination therapy dramatically increased the survival rate of Galleria mellonella and mice in vivo. Moreover, the combination of bavachin and colistin significantly reduced the amount of bacterial biofilm formation, improved the membrane disruption of colistin and inhibited mcr-1 transcription. These findings show that bavachin is a potential adjuvant of colistin, which may provide a new strategy to combat colistin-resistant bacteria infection with lower doses of colistin.


Asunto(s)
Antibacterianos , Colistina , Animales , Ratones , Colistina/farmacología , Antibacterianos/farmacología , Flavonoides/farmacología , Bacterias Gramnegativas , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
8.
Biosensors (Basel) ; 14(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38392022

RESUMEN

Respiratory pathogens pose a huge threat to public health, especially the highly mutant RNA viruses. Therefore, reliable, on-site, rapid diagnosis of such pathogens is an urgent need. Traditional assays such as nucleic acid amplification tests (NAATs) have good sensitivity and specificity, but these assays require complex sample pre-treatment and a long test time. Herein, we present an on-site biosensor for rapid and multiplex detection of RNA pathogens. Samples with viruses are first lysed in a lysis buffer containing carrier RNA to release the target RNAs. Then, the lysate is used for amplification by one-step reverse transcription and single-direction isothermal strand displacement amplification (SDA). The yield single-strand DNAs (ssDNAs) are visually detected by a lateral flow biosensor. With a secondary signal amplification system, as low as 20 copies/µL of virus can be detected in this study. This assay avoids the process of nucleic acid purification, making it equipment-independent and easier to operate, so it is more suitable for on-site molecular diagnostic applications.


Asunto(s)
Técnicas Biosensibles , Virus , Transcripción Reversa , Sensibilidad y Especificidad , ARN , Técnicas de Amplificación de Ácido Nucleico
9.
Crit Rev Microbiol ; 50(2): 196-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400715

RESUMEN

Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in "one health" framework.


Asunto(s)
Bacteriófagos , Animales , Humanos , Bacterias/genética , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
10.
Front Pharmacol ; 15: 1347250, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370472

RESUMEN

Introduction: Riemerella anatipestifer (R. anatipestifer) is an important pathogen in waterfowl, leading to substantial economic losses. In recent years, there has been a notable escalation in the drug resistance rate of R. anatipestifer. Consequently, there is an imperative need to expedite the development of novel antibacterial medications to effectively manage the infection caused by R. anatipestifer. Methods: This study investigated the in vitro and in vivo antibacterial activities of a novel substituted benzene guanidine analog, namely, isopropoxy benzene guanidine (IBG), against R. anatipestifer by using the microdilution method, time-killing curve, and a pericarditis model. The possible mechanisms of these activities were explored. Results and Discussion: The minimal inhibitory concentration (MIC) range of IBG for R. anatipestifer was 0.5-2 µg/mL. Time-killing curves showed a concentration-dependent antibacterial effect. IBG alone or in combination with gentamicin significantly reduced the bacterial load of R. anatipestifer in the pericarditis model. Serial-passage mutagenicity assays showed a low probability for developing IBG resistance. Mechanistic studies suggested that IBG induced membrane damage by binding to phosphatidylglycerol and cardiolipin, leading to an imbalance in membrane potential and the transmembrane proton gradient, as well as the decreased of intracellular adenosine triphosphate. In summary, IBG is a potential antibacterial for controlling R. anatipestifer infections.

11.
Anal Chim Acta ; 1287: 342101, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182383

RESUMEN

BACKGROUND: Haemophilus parasuis (H. parasuis) is a gram-negative bacterial pathogen that causes severe infections in swine, resulting in substantial economic losses. Currently, the majority of H. parasuis detection methods are impractical for on-site application due to their reliance on large instruments or complex procedures. Thus, there is an urgent need to develop a rapid, visually detectable, and highly sensitive detection method, especially under resource-limited environments and field conditions. RESULTS: In this study, we established a naked eye assay for highly sensitive detection by combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a technology. Positive samples exhibited a clear red color visible to the naked eye, while negative samples appeared blue. We achieved a remarkable sensitivity, detecting H. parasuis down to a single copy, with no cross-reactivity with other bacteria. In a mouse model, our assay detected H. parasuis infection nearly 8 h earlier than traditional PCR. Compared to qPCR, our detection results were 100 % accurate. To enhance point-of-care applicability and mitigate the risk of aerosol contamination from uncapping, we consolidated RPA and CRISPR/Cas12a cleavage into a single-tube reaction system. This integrated approach was validated with 20 clinical lung samples, yielding results consistent with those obtained from qPCR. The entire procedure, from DNA extraction to detection, was completed in 35 min. SIGNIFICANCE: We present an RPA-CRISPR/Cas12a assay suitable for the early and resource-efficient diagnosis of H. parasuis infections. Its simplicity and visual detection are advantageous for field diagnostics, representing a substantial develpoment in the diagnosis of H. parasuis.


Asunto(s)
Haemophilus parasuis , Recombinasas , Ratones , Animales , Porcinos , Haemophilus parasuis/genética , Sistemas CRISPR-Cas , Bioensayo , Reacciones Cruzadas
12.
Zool Res ; 45(1): 189-200, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199973

RESUMEN

Monitoring the prevalence of antimicrobial resistance genes (ARGs) is vital for addressing the global crisis of antibiotic-resistant bacterial infections. Despite its importance, the characterization of ARGs and microbiome structures, as well as the identification of indicators for routine ARG monitoring in pig farms, are still lacking, particularly concerning variations in antimicrobial exposure in different countries or regions. Here, metagenomics and random forest machine learning were used to elucidate the ARG profiles, microbiome structures, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs ( P<0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were identified as shared core ARGs between the two pig populations. Furthermore, the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions. Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100% and 98.7%, respectively. Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy ( r=0.72-0.88). Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs. The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.


Asunto(s)
Antiinfecciosos , Microbioma Gastrointestinal , Humanos , Animales , Porcinos , Antibacterianos/farmacología , Estiércol , Farmacorresistencia Bacteriana/genética
13.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139273

RESUMEN

Bovine mastitis caused by infectious pathogens can lead to a decline in production performance and an increase in elimination rate, resulting in huge losses to the dairy industry. This study aims to prepare a novel dairy cow teat disinfectant with polyhexamethylene biguanide (PHMB) as the main bactericidal component and to evaluate its bactericidal activity in vitro and its disinfection effect in dairy cow teats. PHMB disinfectant with a concentration of 3 g/L was prepared with PVA-1788, propylene glycol and glycerol as excipients. When the dilution ratio is 1:4800 and the action time is 5 min, the PHMB teat disinfectant can reduce the four types of bacteria (S. agalactiae ATCC 12386, S. dysgalactiae ATCC 35666, S. aureus ATCC 6538, and E. coli ATCC 8099) by 99.99%. PHMB teat disinfectant applied on the skin of rabbits with four bacteria types achieved an average log10 reduction greater than 4. After 30 s of PHMB teat disinfectant dipping, the bacteria of cow teats were counted prior to disinfection. The mean log10 reduction in bacteria on the skin surface of 12 cows ranged from 0.99 to 3.52 after applying the PHMB teat disinfectant for 10 min. After 12 h, the PHMB teat disinfectant achieved an average log10 reduction in bacteria from 0.27 to 0.68 (compared with that prior to disinfection). These results suggested that PHMB teat disinfection has the potential to prevent and treat mastitis-causing bacteria in dairy herds.


Asunto(s)
Desinfectantes , Mastitis Bovina , Femenino , Animales , Bovinos , Conejos , Desinfectantes/farmacología , Staphylococcus aureus , Escherichia coli , Bacterias , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/prevención & control , Mastitis Bovina/microbiología
14.
Front Vet Sci ; 10: 1285932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964913

RESUMEN

Introduction: Milbemycin oxime (MBO) and praziquantel (PZQ) have a broad spectrum of biological activity and are commonly used to treat the parasitic infection in the veterinary clinic. In this study, a fast and efficient LC-MS/MS method was established and validated for the simultaneous determination of MBO, PZQ, cis-4-hydroxylated-PZQ (C-4-OH-PZQ) and trans-4-hydroxylated-PZQ (T-4-OH-PZQ) and in cat plasma. Methods: Extraction of analytes and internal standards from cat plasma by acetonitrile protein precipitation, allows rapid processing of large batches of samples. MBO, PZQ, C-4-OH-PZQ, T-4-OH-PZQ, and internal standard (IS) were eluted for 13.5 min on a C18 column with a 0.1% formic acid water/acetonitrile mixture as the mobile phase. Results: Results showed that the method had good precision, accuracy, recovery, and linearity. The linearity range was 2.5-250 ng/mL for MBO, and 10-1000 ng/mL for PZQ, C-4-OH-PZQ, and T-4-OH-PZQ. The intra-day and inter-day precision CV values of the tested components were within 15%. The extraction recoveries of the four components ranged from 98.09% to 107.46%. The analytes in plasma remained stable for 6 h at room temperature, 26 h in the autosampler (4 °C), after freeze-thaw (-20°C) cycles, and 60 days in a -20°C freezer. Method sensitivity sufficed for assessing pharmacokinetic parameters of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ in plasma samples with LLOQ of 2.5 ng/mL for MBO and 10 ng/mL for PZQ, C-4-OH-PZQ, and T-4-OH-PZQ. Conclusion: In this study, a selective and sensitive LC-MS/MS method for the simultaneous quantification of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ in cat plasma was developed and validated.This method had been successfully applied to evaluate the pharmacokinetics of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ after a single oral administration of 8 mg MBO and 20 mg PZQ in cats.

15.
J Glob Antimicrob Resist ; 35: 86-92, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37689309

RESUMEN

OBJECTIVES: Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), is an important zoonotic microorganism that increasingly causes public health concern worldwide. The objective of this study was to determine the prevalence and transmission of S. aureus in duck farms and evaluate its antimicrobial resistance and genetic characteristics. METHODS: The samples associated with ducks, feeders, and the environment were collected on 14 duck farms from four areas in Guangdong, China, from 2020 to 2021. All isolates were subjected to antimicrobial susceptibility testing. A comprehensive epidemiological survey of S. aureus was conducted by S. aureus protein A typing and whole-genome sequencing. RESULTS: A total of 560 samples were collected. The prevalence rate of MRSA among ducks (8.1%, 11 of 135) was higher compared with that in environmental samples. OptrA-positive ST398-t034 MRSA were first detected from duck farms in China. A total of 79.3% (34 of 46) S. aureus isolates showed multidrug-resistant phenotypes. Notably, some isolates carried multidrug-resistant genes encoding macrolide-lincosamide-streptogramin B, pleuromutilin-pleuromutilin-streptogramin A, and oxazolidinone. Analysis of the virulence genes revealed that the MRSA isolates carried genes encoding gamma-hemolysin, enterotoxin, and leukocidin. ST9-t899 is a primary clonal lineage among duck- and environment-associated MRSA. Single-nucleotide polymorphism analysis showed the potential contamination relationship of optrA-positive ST2308 MRSA isolates carrying the gamma-hemolysin genes and the leukocidin virulence genes between airborne dust and sick ducks. CONCLUSION: The contamination of MRSA, especially optrA-positive MRSA, between food animals and the environment is a growing public health concern worldwide. Based on One Health principles, continuous surveillance of MRSA is urgently needed.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus/genética , Patos , Granjas , Leucocidinas , Proteínas Hemolisinas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Pleuromutilinas
16.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762514

RESUMEN

Streptococcus suis is an emerging zoonotic pathogen that can cause fatal diseases such as meningitis and sepsis in pigs and human beings. The overuse of antibiotics is leading to an increased level of resistance in S. suis, and novel antimicrobial agents or anti-virulence agents for the treatment of infections caused by S. suis are urgently needed. In the present study, we investigated the antibacterial activity, mode of action and anti-virulence effects of floxuridine against S. suis. Floxuridine showed excessive antibacterial activity against S. suis both in vivo and in vitro; 4 × MIC of floxuridine could kill S. suis within 8 h in a time-kill assay. Meanwhile, floxuridine disrupted the membrane structure and permeability of the cytoplasmic membrane. Molecular docking revealed that floxuridine and SLY can be directly bind to each other. Moreover, floxuridine effectively inhibited the hemolytic capacity and expression levels of the virulence-related genes of S. suis. Collectively, these results indicate that the FDA-approved anticancer drug floxuridine is a promising agent and a potential virulence inhibitor against S. suis.

17.
J Enzyme Inhib Med Chem ; 38(1): 2251712, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37664987

RESUMEN

A series of pleuromutilin analogs containing substituted benzoxazole were designed, synthesised, and assessed for their antibacterial activity both in vivo and in vitro. The MIC of the synthesised derivatives was initially assessed using the broth dilution method against four strains of Staphylococcus aureus (MRSA ATCC 43300, S. aureus ATCC 29213, clinical isolation of S. aureus AD3 and S. aureus 144). Most of the synthesised derivatives displayed prominent in vitro activity (MIC ≤ 0.5 µg/mL). Compounds 50 and 57 exhibited the most effective antibacterial effect against MRSA (MIC = 0.125 µg/mL). Furthermore, the time-kill curves showed that compounds 50 and 57 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 50 was evaluated further using a murine thigh model infected with MRSA (-1.24 log10CFU/mL). Compound 50 exhibited superior antibacterial efficacy to tiamulin. It was also found that compound 50 did not display significant inhibitory effect on the proliferation of RAW 264.7 cells. Molecular docking study revealed that compound 50 can effectively bind to the active site of the 50S ribosome (the binding free energy -7.50 kcal/mol).


Asunto(s)
Antibacterianos , Staphylococcus aureus , Animales , Ratones , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Benzoxazoles/farmacología , Pleuromutilinas
18.
Drug Dev Res ; 84(7): 1437-1452, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37534779

RESUMEN

A series of pleuromutilin derivatives containing benzimidazole were designed, synthesized, and evaluated for their antibacterial activities against Methicillin-resistant Staphylococcus aureus (MRSA) in this study. The in vitro antibacterial activities of the synthesized derivatives against four strains of S. aureus (MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144, and S. aureus AD3) were determined by the broth dilution method. Among these derivatives, compound 58 exhibited superior in vitro antibacterial effect against MRSA (minimal inhibitory concentration [MIC] = 0.0625 µg/mL) than tiamulin (MIC = 0.5 µg/mL). Compound 58 possessed a faster bactericidal kinetic and a longer post-antibiotic effect time against MRSA than tiamulin. Meanwhile, at 8 µg/mL concentration, compound 58 did not display obviously cytotoxic effect on the RAW 264.7 cells. In addition, compound 58 (-2.04 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (-1.02 log10 CFU/mL) in reducing MRSA load in mice thigh infection model. In molecular docking study, compound 58 can successfully attach to the 50S ribosomal active site (the binding free energy is -8.11 kcal/mol). Therefore, compound 58 was a potential antibacterial candidate for combating MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Bencimidazoles/farmacología , Pleuromutilinas
19.
Microbiol Spectr ; 11(4): e0063423, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37432114

RESUMEN

Tigecycline is an important antibacterial drug for treating infection by clinical multidrug-resistant bacteria, and tigecycline-resistant Staphylococcus aureus (TRSA) has been increasingly reported in recent years. Notably, only rpsJ and mepA are associated with the tigecycline resistance of S. aureus. The mepA gene encodes MepA efflux pumps, and the overexpression of mepA has been confirmed to be directly related to tigecycline resistance. Although the mutations of MepA widely occur, the associations between TRSA and mutations of MepA are still unclear. In this study, we explored mutations in the mepA genes from various sources. Then, tigecycline resistance-associated mutations T29I, E287G, and T29I+E287G in MepA were identified, and their effects were evaluated through mutant deletion and complementation, tigecycline accumulation assay, and molecular docking experiments. Results showed that the MICs of tigecycline, gentamicin, and amikacin increased in special complementary transformants and recovered after the addition of the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The tigecycline accumulation assay of the mepA-deleted mutant strain and its complementary transformants showed that T29I, E287G, and T29I+E287G mutations promoted tigecycline efflux, and molecular docking showed that mutations T29I, E287G, and T29I+E287G decreased the binding energy and contributed to ligand binding. Moreover, we inferred the evolutionary trajectory of S. aureus under the selective pressure of tigecycline in vitro. Overall, our study indicated that mutations in MepA play important roles in tigecycline resistance in S. aureus. IMPORTANCE Previous analysis has shown that overexpression of MepA is an exact mechanism involved in tigecycline resistance apart from the rpsJ mutation and is usually dependent on the mutant mepR. However, no research has evaluated the effects of diverse mutations discovered in TRSA in MepA. This study demonstrates that the mutations in MepA confer resistance to tigecycline without overexpression and provides genotypic references for identifying TRSA. Although tigecycline resistance-associated mutations in MepA identified in this study have not been observed in clinical isolates, the mechanism should be explored given that S. aureus strains are prevalent in the environment. Measures should be implemented to contain TRSA within the time window before tigecycline resistance-associated mutations in MepA are prevalent.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Tigeciclina/metabolismo , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Mutación , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
20.
Int J Antimicrob Agents ; 62(4): 106932, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495058

RESUMEN

OBJECTIVES: Staphylococcus aureus is an opportunistic pathogen that is considered a high priority for research. However, comparative studies of S. aureus strains from different environments and hosts are still lacking. METHODS: Here, we performed a high-resolution bioinformatics analysis of 576 S. aureus genomes isolated from livestock, farm environments, farm workers, animal-origin food, and humans. RESULTS: The S. aureus isolates showed high diversity in genetic lineages and demonstrated host specialization and multi-host range in the population phylogeny. Recent transmission events, historical divergences, and frequent host switching in specific sequence types (STs) and through the food chain and animal farm mediums were observed. Frequent gene transfer may quickly give rise to new fitness to colonize their host or switch to other hosts, even in isolates with the closest vertical evolutionary history. The large multi-host-shared antibiotic resistance gene (ARG) pool was the major factor shaping antibiotic resistance in S. aureus isolates. We revealed the genetic backgrounds of mec, cfr, and optrA, which could be spread among isolates from different species, hosts, and environments. CONCLUSION: Overall, our findings provide One Health genomic insights into the evolution, transmission, gene content characteristics, and antibiotic resistance profiles of S. aureus from different hosts, suggesting that, despite well-formed host specificity during the evolution of S. aureus, the ever-expanding host range and the cross-hosts/niches transmission (at both the strain and genetic level) may be facilitated by diverse bacterial vehicles (e.g., food chain, farm environments, and workers), which will lead to emerging antibiotic resistance consequences and threaten public health and food safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...