Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
1.
BMC Complement Med Ther ; 24(1): 262, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987702

RESUMEN

BACKGROUND: Bitter orange (Citrus aurantium) is a fruiting shrub native to tropical and subtropical countries around the world and cultivated in many regions due to its nutraceutical value. The current study investigated the metabolic profiling and enzyme inhibitory activities of volatile constituents derived from the C. aurantium peel cultivated in Egypt by three different extraction methods. METHODS: The volatile chemical constituents of the peel of C. aurantium were isolated using three methods; steam distillation (SD), hydrodistillation (HD), and microwave-assisted hydrodistillation (MAHD), and then were investigated by GC-MS. The antioxidant potential was evaluated by different assays such as DPPH, ABTS, FRAP, CUPRAC, and phosphomolybdenum and metal chelating potential. Moreover, the effect of enzyme inhibition of the three essential oils was tested using BChE, AChE, tyrosinase, glucosidase, as well as amylase assays. RESULTS: A total of six compounds were detected by GC/MS analysis. The major constituent obtained by all three extraction methods was limonene (98.86% by SD, 98.68% by HD, and 99.23% by MAHD). Differences in the composition of the compounds of the three oils were observed. The hydrodistillation technique has yielded the highest number of compounds, notably two oxygenated monoterpenes: linalool (0.12%) and α-terpineol acetate (0.1%). CONCLUSION: In our study differences in the extraction methods of C. aurantium peel oils resulted in differences in the oils' chemical composition. Citrus essential oils and their components showed potential antioxidant, anticholinesterase, antimelanogenesis, and antidiabetic activities. The presence of linalool and α-terpineol acetate may explain the superior activity observed for the oil isolated by HD in both radical scavenging and AChE inhibition assays, as well as in the enzyme inhibition assays.


Asunto(s)
Antioxidantes , Frutas , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Frutas/química , Antioxidantes/farmacología , Antioxidantes/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cromatografía de Gases y Espectrometría de Masas , Citrus aurantiifolia/química , Citrus/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Egipto , Monoterpenos/farmacología , Monoterpenos Acíclicos/farmacología , Limoneno/farmacología
2.
Fitoterapia ; 177: 106115, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977255

RESUMEN

This study was designed to investigate chemical composition and biological activities of the Anthriscus cerefolium methanolic extract. Chemical characterization of the extracts was performed by LC-HRMS/MS analysis. Antimicrobial activities of the extract were investigated on six bacteria and eight fungi while antioxidant activity was assessed by six different assays. Anti-enzymatic activity of the methanolic extract was tested on five enzymes associated with therapy of neurodegenerative diseases and diabetes mellitus type 2. Cytotoxic properties of the extract were tested on human immortalized keratinocytes (HaCaT) and tumor cell lines (SiHa, MCF7, HepG2). Anti-inflammatory activity of the extract was assessed on bacteria mediated inflammation model using HaCaT cell line. Molecular docking studies of enzymes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis were performed. The results showed that the obtained extract was rich in phenolic compounds (a total of seventy-two were identified), with malonyl-1,4-O-dicaffeoylquinic acid and 3,5-O-dicaffeoylquinic acid dominating in the sample. The extract expressed antimicrobial, antioxidant, anti-enzymatic, cytotoxic and anti-inflammatory properties. The identified compounds demonstrated strong binding to the acetylcholinesterase (AChE) and to a lesser extent, to the butyrylcholinesterase (BChE), glucosidase, amylase, and modestly, to tyrosinase. KEGG pathway analysis has shown that the certain phenolic compounds may be related to anti-tumor, anti-inflammatory and anti-microbial activities of the extract. The data obtained suggest that phenolic compounds of the extract and their mixtures should be considered for future research as ingredients in pharmaceutical and nutraceutical formulations.

3.
Nat Prod Res ; : 1-5, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015035

RESUMEN

Artemisia judica L. is a desert aromatic herb with a characteristic fragrance and taste belonging to the family Asteraceae. This study aimed to evaluate the chemical composition of essential oil isolated from A. judaica L. using GC-MS analysis, along with an investigation of its antioxidant properties and inhibitory activity against key enzymes involved in the pathogenesis of Alzheimer's, diabetes mellitus, and skin pigmentation. GC-MS analysis of the oil revealed the identification of fourteen compounds (97.89%), predominated by piperitone (51.40%), followed by ethyl (E)-cinnamate (20.44%), (+)-2-bornanone (5.63%), and ethyl-(Z)-cinnamate (4.78%). The oil demonstrated remarkable antioxidant activities in the following order: ABTS (66.81 ± 1.49 mgTE/g)< CUPRAC (66.24 ± 0.53mgTE/g)

4.
BMC Complement Med Ther ; 24(1): 286, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061039

RESUMEN

BACKGROUND: Moringa oleifera is a highly nutritious plant widely used in traditional medicine. RESULTS: The aroma constituents present in the fresh flowers of M. oleifera versus the hydrodistilled oil and hexane extract were studied using GC-MS. Aldehydes were the major class detected in the fresh flowers (64.75%) with E-2-hexenal being the predominant component constituting > 50%. Alkane hydrocarbons, monoterpenes, and aldehydes constituted > 50% of the hydrodistilled oil, while alkane hydrocarbons exclusively constitute up to 65.48% of the hexane extract with heptacosane being the major component (46.2%). The cytotoxicity of the hexane extract was assessed on RAW 264.7 macrophages using the MTT assay which revealed no significant cytotoxicity at concentrations of 1 µg/mL and displayed IC50 value at 398.53 µg/mL as compared to celecoxib (anti-inflammatory drug) with IC50 value at 274.55 µg/ml. The hexane extract of Moringa flowers displayed good anti-inflammatory activity through suppression of NO, IL-6, and TNF-α in lipopolysaccharide-induced RAW 264.7 macrophages. The total phenolic and flavonoid content in the hexane extract was found to be 12.51 ± 0.28 mg GAE/g extract and 0.16 ± 0.01 mg RuE/g extract, respectively. It displayed moderate antioxidant activity as indicated by the in vitro DPPH, ABTS, CUPRAC, FRAP, and phosphomolybdenum (PBA) assays. No metal chelating properties were observed for the extract. The enzyme inhibitory potential of the hexane extract was evaluated on acetyl- and butyrylcholinesterases (for neuroprotective assessment), α-amylase and α-glucosidase (for antihyperglycemic assessment), and tyrosinase (for dermoprotective assessment) revealing promising results on cholinesterases, tyrosinase, and α-glucosidase. CONCLUSION: Our findings suggested that M. oleifera leaves can be considered as a multidirectional ingredient for preparing functional applications.


Asunto(s)
Antiinflamatorios , Antioxidantes , Flores , Moringa oleifera , Extractos Vegetales , Ratones , Animales , Flores/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Moringa oleifera/química , Células RAW 264.7 , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Odorantes/análisis
5.
Chem Biodivers ; : e202400552, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958194

RESUMEN

In this study, the bioactive components, enzyme inhibitory, antioxidant and anticancer potentials of edible (L. sativa) and a new species (L. anatolica) of Lactuca were evaluated and compared. The quantitative analyzes of the bioactive components of L. sativa (LS) and L. anatolica (LA) were analyzed quantitatively by GC-MS and Orbitrab HPLC-HRMS. Antioxidant, enzyme inhibitory and anticancer properties were analyzed by various assays. In general, LA exhibited more stronger antioxidant properties compared to LS. The extracts showed similar inhibitory effects on these enzymes. It was determined that LS was dominant in terms of linoleic acid (23.71%), while LA contained a high level of α-linolenic acid (31.70%). LA and LS inhibited the viability of A549 and MCF-7 cells in a dose-dependent manner. IC50 values for LA, LS and cisplatin were determined as 120.3, 197.5, 4.3 µg/mL in A549 cell line and 286.2, 472.8, 7.2 µg/mL in MCF-7 cell line, respectively. It was revealed that LA and LS treatment at 50 µg/mL concentrations in A549 cells completely suppressed the colony forming capacity, and treatment with IC50 doses inhibited cell migration, and triggered apoptosis by regulating caspase-3, cPARP, p53 and p21. The findings of this study suggested that these species have significant pharmacological potential.

6.
Curr Res Food Sci ; 9: 100803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076680

RESUMEN

Citrus sinensis balady orange, C. sinensis navel orange, C. paradisi, C. limon, C. sinensis bloody orange, C. sinensis sweet orange, C. aurantium var. amara and C. reticulata were successfully discriminated using chromatographic and spectroscopic techniques coupled with chemometrics. Ultraviolet spectroscopy (UV), and nuclear magnetic resonance spectroscopy (NMR) managed to discriminate the alcohol extract samples to six and five clusters respectively on exposing the obtained data to Principle component analysis (PCA). High performance liquid chromatography (HPLC) was utilized for differentiating the different samples based upon their rutin content where C. aurantium demonstrated the highest rutin content (0.795 mg/mL). LC-ESI-MS led to the identification of 35 compounds belonging mainly to flavonoids and limonoids. In vitro biological investigations including DDPH, ABTS, FRAP and enzyme inhibitory activities revealed the promising antioxidant, neuroprotective, anti-hyperglycaemic and skin-lightning potentials of citrus samples that were correlated with the total phenol and flavonoid contents. In silico ADME/TOPKAT reflected the acceptable pharmacokinetic, pharmacodynamic and toxicity properties of the identified secondary metabolites.

7.
Arch Pharm (Weinheim) ; : e2400257, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849325

RESUMEN

The n-hexane, ethyl acetate, ethanol, ethanol/water (70% ethanol), and water extracts of Astragalus aduncus aerial parts were investigated for their antioxidant potential, enzyme inhibition activity (anti-acetylcholinesterase [AChE], anti-butyrylcholinesterase [BChE], antityrosinase, antiamylase, and antiglucosidase) and antiproliferative effect (against colon adenocarcinoma cell line [HT-29], gastric cancer cell line [HGC-27], prostate carcinoma cell line [DU-145], breast adenocarcinoma cell line [MDA-MB-231], and cervix adenocarcinoma cell line [HeLa]). In addition, the phytochemical profile of the extracts was evaluated using validated spectrophotometric and high-pressure liquid chromatography-electrospray ionization/tandem mass spectroscopy methods. Generally, the 70% ethanol extract demonstrated the strongest antioxidant properties, and it was the richest source of total phenolic constituents. Our findings indicated that the ethyl acetate extract was the most potent BChE inhibitor (11.44 mg galantamine equivalents [GALAE]/g) followed by the ethanol extract (8.51 mg GALAE/g), while the ethanol extract was the most promising AChE inhibitor (3.42 mg GALAE/g) followed by the ethanol/water extract (3.17 mg GALAE/g). Excellent tyrosinase inhibitory activity (66.25 mg kojic acid equivalent/g) was observed in ethanol/water extracts of the aerial part of A. aduncus. Тhese results showed that the most cytotoxic effects were exhibited by the ethyl acetate extract against HGC-27 cells (IC50: 36.76 µg/mL), the ethanol extract against HT-29 cells (IC50: 30.79 µg/mL), and the water extract against DU-145 cells (IC50: 37.01 µg/mL). A strong correlation was observed between the highest total flavonoid content and the highest content of individual compounds in the ethanol extract, including rutin, hyperoside, isoquercitrin, delphinidin-3,5-diglucoside (delphinidin-3,5-O-diglucoside), and kaempferol-3-glucoside (kaempferol-3-O-glucoside). In the present study, the A. aduncus plant was considered a new source of antioxidants, enzyme inhibitors, and anticancer agents and could be used as a future health-benefit natural product.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38909275

RESUMEN

Benzene sulfonamides are an important biological substituent for several activities. In this study, hybridization of benzene sulfonamide with piperazine derivatives were investigated for their antioxidant capacity and enzyme inhibitory potencies. Six molecules were synthesized and characterized. DPPH, ABTS, FRAP, CUPRAC, chelating and phosphomolybdemum assays were applied to evaluate antioxidant capacities. Results show that compounds have high antioxidant capacity and compound 4 has the best antioxidant activity among them. Compound 4 has higher antioxidant activity than references for FRAP (IC50: 0.08 mM), CUPRAC (IC50: 0.21 mM) and phosphomolybdenum (IC50: 0.22 mM) assays. Besides this, compound 4 has moderate DPPH and ABTS antioxidant capacity. Furthermore, enzyme inhibition activities of these molecules were investigated against AChE, BChE, tyrosinase, α-amylase and α-glucosidase enzymes. It was revealed that all compounds have good enzyme inhibitory potential except for α-amylase enzyme. The best inhibitory activities were observed for AChE with compound 5 the same value (IC50: 1.003 mM), for BChE with compounds 2 and 5 the same value (IC50: 1.008 mM), for tyrosinase compound 4 (IC50: 1.19 mM), and for α-glucosidase with compound 3 (IC50: 1.000 mM). Docking studies have been conducted with these molecules, and the results correlate well with the inhibitory assays.

9.
Arch Pharm (Weinheim) ; : e2400194, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877616

RESUMEN

Tanacetum nitens ( Boiss. & Noë)  Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, ß-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.

10.
Antioxidants (Basel) ; 13(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38929082

RESUMEN

The present study was performed to determine the chemical constituents, cytotoxicity, antioxidant and enzyme inhibition activities of the aerial parts of Glaucium acutidentatum Hausskn. and Bornm. (family Papaveraceae). Methanolic and aqueous extracts were prepared by maceration, homogenizer-assisted extraction (HAE) and infusion. Results showed that the highest total phenolic and flavonoids contents were obtained from the methanol extracts obtained by HAE (53.22 ± 0.10 mg GAE/g) and maceration (30.28 ± 0.51 mg RE/g), respectively. The aporphine, beznyltetrahydroisoquinoline, and protopine types of Glaucium alkaloids have been tentatively identified. Among them, glaucine was identified in all extracts. Flavonoids, phenolic acids, coumarins, organic acids and fatty acids were also detected. Methanolic extract obtained using the HAE method displayed the highest anti-DPPH (41.42 ± 0.62 mg TE/g), total antioxidant (1.20 ± 0.17 mmol TE/g), Cu2+ (113.55 ± 6.44 mg TE/g), and Fe3+ (74.52 ± 4.74 mg TE/g) reducing properties. The aqueous extracts obtained by infusion and HAE methods exerted the best anti-ABTS (103.59 ± 1.49 mg TE/g) and chelating (19.81 ± 0.05 mg EDTAE/g) activities, respectively. Methanolic extract from HAE recorded the highest acetylcholinesterase (2.55 ± 0.10 mg GALAE/g) and α-amylase (0.51 ± 0.02 mmol ACAE/g) inhibition activities, while that obtained by maceration showed the best butyrylcholinesterase (3.76 ± 0.31 mg GALAE/g) inhibition activity. Both extracts revealed the best tyrosinase inhibitory activity (25.15 ± 1.00 and 26.79 ± 2.36 mg KAE/g, p ≥ 0.05). G. acutidentatum maceration-derived aqueous extract showed selective anticancer activity against cells originating from human hypopharyngeal carcinoma. In conclusion, these findings indicated that G. acutidentatum is a promising source of alkaloids and phenolic compounds for variable pharmaceutical formulations.

11.
Chem Biodivers ; : e202401209, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865194

RESUMEN

This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26 %), 1,8-cineole (11.82 %), limonene (5.27 %), α-terpineol (4.16 %), and ß-caryophyllene (4.04 %). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, ß-caryophyllene (IC50=79.91±2.24 and 62.08±2.78 µg/mL) and limonene (IC50=90.73±3.47 and 68.98±1, 60 µg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, ß-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.

12.
Nat Prod Res ; : 1-11, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808581

RESUMEN

Allochrusa gypsophiloides is one of the best-known endemic saponin bearing food plants of Central Asia. However, the plant's secondary metabolites remain unmapped. The current study aimed to chemical profile of the metabolite in the plant roots by an untargeted UHPLC-ESI-MS, together with the isolation of the major compounds followed by a 2D NMR and HR-MS for identification and evaluation of the antioxidant and enzyme inhibitory activity of the extracts. The results revealed the presence of 48 putatively annotated metabolites comprising triterpene glycosides, phenolic compounds and their derivatives, organic acid glycosides, and lignan glycosides. The chromatographic separation and purification of the extract resulted in the isolation of four compounds where two new compounds and along with two known triterpenes were reported. The ethanol/water extracts showed a maximum effect in antioxidant assays, while the ethyl acetate extract achieved the best effect in the enzyme inhibitory assays.

13.
Fitoterapia ; 176: 106016, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740345

RESUMEN

Over the years, the biological activities of seaweeds could have piqued research interest due to their specific functional phytochemistry, which may not be available in terrestrial plants. Seaweeds produce these compounds to overcome and control stressful biotic and abiotic conditions. Additionally, they are potentially excellent sources of highly useful leads in the development of new drugs. Our study aims to unveil, for the first time, an overview of Halopteris scoparia, a species belonging to the Phaeophyceae class and the Stypocaulacea family, by summarizing all available literature data. In this work, we attempt to shed light on its phytochemistry, nutritional values, pharmacological activities, and industrial uses and applications. To gather information related to H. scoparia, relevant keywords were used to search internet databases including Google Scholar, PubMed, ResearchGate, Web of Science, Algae Database, WoRMS database, and DORIS database. The chemical structures were drawn using Chemdraw and verified using the PubChem database. Chemically, this species contains a wide variety of secondary metabolites, such as terpenoids and phenolic compounds. Additionally, other chemical components with nutraceutical value have been identified, such as carbohydrates, proteins, lipids, pigments, minerals and mycosporine like amino acids. Then, holding several reported pharmacological properties, including antioxidant, anti-inflammatory, cytotoxic, dermoprotective, antidepressive, antibacterial, antibiofilm, antifungal, anti-parasitic activities and acute toxicity. In addition to other their applications such as bioconversion and antifouling activities. To confirm the previous pharmacological properties, more comprehensive and systematic in vivo, preclinical, and clinical studies are needed. Furthermore, research is required to uncover the mechanisms of its active compounds and their potential therapeutic effects in treating other diseases such as atherosclerosis, neurodegenerative diseases, and viral infections.


Asunto(s)
Phaeophyceae , Fitoquímicos , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Phaeophyceae/química , Humanos , Estructura Molecular , Animales , Algas Marinas/química
14.
Chem Biodivers ; : e202400893, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779862

RESUMEN

The present study aimed to investigate the chemical constituents of different extracts from aerial parts of A. absinthium and to evaluate their antioxidant and enzyme inhibition activity. Extracts were prepared by maceration, infusion or Soxhlet techniques. Results showed that the highest total phenolic and flavonoids contents was recorded respectively from the hexane extract prepared by maceration and ethyl acetate extract obtained by Soxhlet method. The characteristic compounds of Artemisia species artemetin, casticin, sesartemin and yangambin in addition to coumarins were identified in all extracts. Aqueous extract obtained by infusion exerted the highest radical scavenging and ions reducing properties while that prepared by maceration displayed the highest chelating power. Methanol extracts obtained by the two methods of extraction exerted the highest anti-Tyr activity while that obtained by maceration showed the best α-glucosidase inhibition activity. These findings indicated that A. absinthium is a rich source of bioactive molecules with possible therapeutic applications.

15.
Chem Biodivers ; 21(7): e202400738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695450

RESUMEN

In the current investigation, a comprehensive analysis was carried out on essential oils (EOs) extracted from six aromatic plant species, namely Rosmarinus officinalis, Pelargonium graveolens, Thymus vulgaris, Origanum vulgare, Laurus nobilis, and Aloysia citrodora. An exploration was conducted into the chemical composition using Gas Chromatography-Mass Spectrometry (GC/MS), antioxidant properties assessed through DPPH, ABTS, CUPRAC, FRAP, MCA, and PBD assays, ecotoxicological impacts evaluated via allelopathy and the Daphnia magna heartbeat test, as well as bio-pharmacological effects including anticancer activity and gene expression analysis. Results revealed strong antioxidant activity in all essential oils, with T. vulgaris EO (2748.00 mg TE/g) and O. vulgare EO (2609.29 mg TE/g) leading in CUPRAC assay. R. officinalis EO showed the highest α-amylase inhibition at 1.58 mmol ACAE/g, while O. vulgare EO excelled in α-glucosidase inhibition at 1.57 mmol ACAE/g. Additionally, cytotoxic effects were evaluated on human colorectal cancer (HCT116) cells. A. citrodora, O. vulgare, and R. officinalis EOs were found the most potent anticancer, as also witnessed by their higher modulatory effects on the gene expression of BAX and Bcl-2. Collectively, the present data highlight the importance to implement the knowledge and to valorize the supply chain of aromatic plants.


Asunto(s)
Antioxidantes , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites Volátiles/aislamiento & purificación , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo
16.
Saudi Pharm J ; 32(6): 102090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766273

RESUMEN

In order to gain further insight into how various extraction techniques (maceration, microwave-, and ultrasound-assisted extractions) affect the chemical profile and biological activities of leaf extracts from Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L., this research was performed. The targeted chemical characterization of the extracts was achieved using the Ultra-High-Performance-Liquid-Chromatography-Linear-Trap-Mass-Spectrometry OrbiTrap instrumental technique, while Fourier Transform Infrared Spectroscopy was conducted to investigate the structural properties of the examined leaf extracts. According to the results, the species P. officinalis, Bozurna locality as the origin of the plant material, and microwave-assisted extraction produced the maximum polyphenol yield, (491.9 ± 2.7 mg gallic acid equivalent (GAE)/mL). The ethanolic extracts exhibited moderate antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and phosphomolybdenum tests. With MIC values of 0.125 mg/mL, the leaf extracts produced by ultrasound-assisted extraction and maceration (Deliblato sands and Bogovo gumno) had the best antibacterial activity against Pseudomonas aeruginosa and Salmonella Typhimurium. Ultrasound-assisted extraction has proven to produce the most effective antimicrobial agents. Inhibitory potential towards glucosidase, amylase, cholinesterases, and tyrosinase was evaluated in enzyme inhibition assays and molecular docking simulations. Results show that leaves of P. tenuifolia L. obtained by ultrasound-assisted extraction had the highest acetylcholinesterase and butyrylcholinesterase inhibitory activity. Namely, the complexity of the polyphenol structures, the extraction method, the used locality, and the different mechanisms of the reactions between bioactives from leaf extracts and other components (free radicals, microorganisms, and enzymes) are the main factors that influence the results of the antioxidant tests, as well as the antibacterial and enzyme-inhibitory activities of the extracts. Hydroxymethyl-phenyl pentosyl-hexoside and acetyl-hydroxyphenyl-hexoside were the first time identified in the leaf extract of the Paeonia species. Due to their proven biological activities and the confirmed existence of bioactive compounds, leaf extracts may find use in foodstuffs, functional foods, and pharmaceutical products.

17.
Prep Biochem Biotechnol ; : 1-14, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38756105

RESUMEN

For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.

18.
Plant Physiol Biochem ; 211: 108713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739963

RESUMEN

The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 µM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.


Asunto(s)
Curcumina , Metabolómica , Fotosíntesis , Spinacia oleracea , Curcumina/farmacología , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estrés Fisiológico/efectos de los fármacos
19.
Microsc Res Tech ; 87(9): 2134-2142, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38706231

RESUMEN

This research on Lamiales epidermal anatomy not only provides in-depth understanding of their structural traits but also highlights the significance of uncovering the inherent antimicrobial resilience embedded within these plants. Such insights hold promise for advancing natural product-based approaches in medicine, potentially contributing to the development of novel antimicrobial agents inspired by Lamiales unique biological defense mechanisms. Scanning microscopic tools were utilized to conduct foliar epidermal anatomy of nine species that belong to seven genera and four families within the Lamiales order, Plantaginaceae, Scrophulariaceae, Verbenaceae, and Lamiaceae. This approach aimed to gather both qualitative and quantitative data, facilitating the assessment of taxonomic microanatomical significance. The shape of epidermal cells and their anticlinal walls; number of epidermal cells, stomata, and trichomes; type of stomata and trichomes; length and width of epidermal cells, trichomes, stomatal pore, guard cells, and subsidiary cells; and stomatal index were determined statistically. Most of the species examined were amphistomatous and showed extensive array of trichomes diversity. The exploration of Lamiales epidermal micromorphology and their antimicrobial potential were significant for their implications in multidisciplinary fields. The pharmacological research to utilize sustainable agricultural practices prompts avenues to strengths of Lamiales order for the development of novel antimicrobial solutions and ecological benefits. RESEARCH HIGHLIGHTS: Diverse trichome morphometry reveals a wide array of trichome structures across Lamiales species. Epidermal microscopic architecture variability of epidermal cell shapes and sizes signifies the interspecies variability. Secondary metabolite localization within microanatomical structures elucidates potential hotspots for antimicrobial compound production.


Asunto(s)
Antiinfecciosos , Epidermis de la Planta , Tricomas , Epidermis de la Planta/química , Antiinfecciosos/farmacología , Hojas de la Planta/química , Estomas de Plantas/efectos de los fármacos
20.
Microsc Res Tech ; 87(9): 2204-2211, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38725294

RESUMEN

This study discusses the micro-level structural details of Cichorieae pollen sources elucidated by scanning electron microscopy (SEM) and explains their symmetry and morphometry. The in-depth knowledge from the electron ultrastructure of Asteraceae pollen has provided insights into enhanced pollen morphology, and the antimicrobial significance of species under study presents novel avenues for their natural defense mechanisms in the development of antimicrobial agents. In this research, both quantitative and qualitative features of pollen were examined. The pollen grains are prolate-spheroidal and oblate-spheroidal in shape, characterized by a maximum polar diameter of 55.6-61.0 µm and a maximum equatorial distance of 68.3-74.4 µm. SEM reveals various configurations such as echinate perforate-tectate, psilate, and echino-lophate perforate. The Cichorieae species have significant antimicrobial efficacy and are promising sources for the development of novel antimicrobial drugs with potential implications in pharmaceutical and healthcare industries. SEM analysis of Cichorieae pollens has provided remarkable insights into their unique structures, revealing diverse shapes and surface ornamentations, which can be used for accurate Asteraceae species identification. RESEARCH HIGHLIGHTS: SEM provides unique pollen surface structures and patterns of Chicory pollen grains. Chemical composition of Chicory botanical sources provides valuable information on their potential as antimicrobial agents. SEM imaging reveals specialized fenestrate grain structures of taxonomic importance.


Asunto(s)
Antiinfecciosos , Cichorium intybus , Microscopía Electrónica de Rastreo , Polen , Polen/ultraestructura , Polen/química , Antiinfecciosos/farmacología , Cichorium intybus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA