Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Front Robot AI ; 11: 1335147, 2024.
Article En | MEDLINE | ID: mdl-38638271

The robotics discipline is exploring precise and versatile solutions for upper-limb rehabilitation in Multiple Sclerosis (MS). People with MS can greatly benefit from robotic systems to help combat the complexities of this disease, which can impair the ability to perform activities of daily living (ADLs). In order to present the potential and the limitations of smart mechatronic devices in the mentioned clinical domain, this review is structured to propose a concise SWOT (Strengths, Weaknesses, Opportunities, and Threats) Analysis of robotic rehabilitation in MS. Through the SWOT Analysis, a method mostly adopted in business management, this paper addresses both internal and external factors that can promote or hinder the adoption of upper-limb rehabilitation robots in MS. Subsequently, it discusses how the synergy with another category of interaction technologies - the systems underlying virtual and augmented environments - may empower Strengths, overcome Weaknesses, expand Opportunities, and handle Threats in rehabilitation robotics for MS. The impactful adaptability of these digital settings (extensively used in rehabilitation for MS, even to approach ADL-like tasks in safe simulated contexts) is the main reason for presenting this approach to face the critical issues of the aforementioned SWOT Analysis. This methodological proposal aims at paving the way for devising further synergistic strategies based on the integration of medical robotic devices with other promising technologies to help upper-limb functional recovery in MS.

2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article En | MEDLINE | ID: mdl-37941291

Body-Machine Interfaces (BoMIs) are promising assistive and rehabilitative tools for helping individuals with impaired motor abilities regain independence. When operating a BoMI, the user has to learn a novel sensorimotor transformation between the movement of certain body parts and the output of the device. In this study, we investigated how different feedback modalities impacted learning to operate a BoMI. Forty-seven able-bodied participants learned to control the velocity of a 1D cursor using the 3D rotation of their dominant wrist to reach as many targets as possible in a given amount of time. The map was designed to maximize cursor speed for movements around a predefined axis of wrist rotation. We compared the user's performance and control efficiency under three feedback modalities: i) visual feedback of the cursor position, ii) proprioceptive feedback of the cursor position delivered by a wrist manipulandum, iii) both i) and ii). We found that visual feedback led to a greater number of targets reached than proprioceptive feedback alone. Conversely, proprioceptive feedback yielded greater alignment between the axis of rotation of the wrist and the optimal axis represented by the map. These results suggest that proprioceptive feedback may be preferable over visual feedback when information about intrinsic task components, i.e. joint configurations, is of interest as in rehabilitative interventions aiming to promote more effective learning strategies.


Learning , Wrist , Humans , Feedback , Movement , Wrist Joint , Proprioception , Psychomotor Performance
3.
Front Hum Neurosci ; 17: 1000832, 2023.
Article En | MEDLINE | ID: mdl-37007684

Introduction: Position sense, which belongs to the sensory stream called proprioception, is pivotal for proper movement execution. Its comprehensive understanding is needed to fill existing knowledge gaps in human physiology, motor control, neurorehabilitation, and prosthetics. Although numerous studies have focused on different aspects of proprioception in humans, what has not been fully investigated so far are the neural correlates of proprioceptive acuity at the joints. Methods: Here, we implemented a robot-based position sense test to elucidate the correlation between patterns of neural activity and the degree of accuracy and precision exhibited by the subjects. Eighteen healthy participants performed the test, and their electroencephalographic (EEG) activity was analyzed in its µ band (8-12 Hz), as the frequency band related to voluntary movement and somatosensory stimulation. Results: We observed a significant positive correlation between the matching error, representing proprioceptive acuity, and the strength of the activation in contralateral hand motor and sensorimotor areas (left central and central-parietal areas). In absence of visual feedback, these same regions of interest (ROIs) presented a higher activation level compared to the association and visual areas. Remarkably, central and central-parietal activation was still observed when visual feedback was added, although a consistent activation in association and visual areas came up. Conclusion: Summing up, this study supports the existence of a specific link between the magnitude of activation of motor and sensorimotor areas related to upper limb proprioceptive processing and the proprioceptive acuity at the joints.

4.
Front Bioeng Biotechnol ; 10: 973716, 2022.
Article En | MEDLINE | ID: mdl-36246368

The contribution to balance of spinal and transcortical processes including the long-latency reflex is well known. The control of balance has been modelled previously as a continuous, state feedback controller representing, long-latency reflexes. However, the contribution of slower, variable delay processes has not been quantified. Compared with fixed delay processes (spinal, transcortical), we hypothesize that variable delay processes provide the largest contribution to balance and are sensitive to historical context as well as current states. Twenty-two healthy participants used a myoelectric control signal from their leg muscles to maintain balance of their own body while strapped to an actuated, inverted pendulum. We study the myoelectric control signal (u) in relation to the independent disturbance (d) comprising paired, discrete perturbations of varying inter-stimulus-interval (ISI). We fit the closed loop response, u from d, using one linear and two non-linear non-parametric (many parameter) models. Model M1 (ARX) is a generalized, high-order linear-time-invariant (LTI) process with fixed delay. Model M1 is equivalent to any parametric, closed-loop, continuous, linear-time-invariant (LTI), state feedback model. Model M2, a single non-linear process (fixed delay, time-varying amplitude), adds an optimized response amplitude to each stimulus. Model M3, two non-linear processes (one fixed delay, one variable delay, each of time-varying amplitude), add a second process of optimized delay and optimized response amplitude to each stimulus. At short ISI, the myoelectric control signals deviated systematically both from the fixed delay LTI process (M1), and also from the fixed delay, time-varying amplitude process (M2) and not from the two-process model (M3). Analysis of M3 (all fixed delay and variable delay response amplitudes) showed the variable (compared with fixed) delay process 1) made the largest contribution to the response, 2) exhibited refractoriness (increased delay related to short ISI) and 3) was sensitive to stimulus history (stimulus direction 2 relative to stimulus 1). For this whole-body balance task and for these impulsive stimuli, non-linear processes at variable delay are central to control of balance. Compared with fixed delay processes (spinal, transcortical), variable delay processes provided the largest contribution to balance and were sensitive to historical context as well as current states.

5.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Article En | MEDLINE | ID: mdl-36176156

Afferent proprioceptive signals, responsible for body awareness, have a crucial role when planning and executing motor tasks. Increasing evidence suggests that proprioceptive sensory training may improve motor performance. Although this topic had been partially investigated, there was a lack of studies involving the wrist joint. Proprioception at the wrist level is particularly relevant to interact with the environment through actions that require an accurate sense of position and motion, and fine haptic perception. In this study, we implemented and tested a robotic training algorithm of human wrist proprioception. The proposed task was a continuous tracking in the workspace identified by flexion-extension and radial-ulnar deviation movements. Healthy subjects were haptically guided towards the target, without any visual feedback of the position of the end- effector. Our results showed that, after the training, participants improved their motor performance in a different tracking task, completely active and with visual feedback Additionally, the training led them to more efficient use of kinesthetic feedback during haptically-guided reaching tasks. Our findings demonstrated that the proposed training algorithm of wrist proprioception induced a task-specific sensorimotor enhancement. From the perspective of a rehabilitative intervention, this robot-based training has the potential to improve motor functions and the quality of life of subjects with sensorimotor deficits.


Robotics , Wrist , Humans , Proprioception , Quality of Life , Wrist Joint
6.
J Manipulative Physiol Ther ; 45(3): 216-226, 2022.
Article En | MEDLINE | ID: mdl-35906104

OBJECTIVE: The purpose of this study was to examine the effects of submaximal isometric neck muscle fatigue and manual therapy on wrist joint position sense (JPS) within healthy individuals and individuals with subclinical neck pain (SCNP). METHODS: Twelve healthy participants and 12 participants with SCNP were recruited. Each group completed 2 sessions, with 48 hours between sessions. On day 1, both groups performed 2 wrist JPS tests using a robotic device. The tests were separated by a submaximal isometric fatigue protocol for the cervical extensor muscles (CEM). On day 2, both groups performed a wrist JPS test, followed by a cervical treatment consisting of manual therapy (SCNP) or neck rest (20 minutes, control group) and another wrist JPS test. Joint position sense was measured as the participant's ability to recreate a previously presented wrist angle. Each wrist JPS test included 12 targets, 6 into wrist flexion and 6 into wrist extension. Kinematic data from the robot established absolute, variability, and constant error. RESULTS: Absolute error significantly decreased (P = .01) from baseline to post-fatigue in the SCNP group (baseline = 4.48 ± 1.58°; post-fatigue = 3.90 ± 1.45°) and increased in the control group (baseline = 3.12 ± 0.98°; post-fatigue = 3.81 ± 0.90°). The single session of manual cervical treatment significantly decreased absolute error in participants with SCNP (P = .004). CONCLUSION: This study demonstrated that neck pain or fatigue can lead to altered afferent input to the central nervous system and can affect wrist JPS. Our findings demonstrate that acute wrist proprioception may be improved in individuals with SCNP by a single cervical manual therapy session.


Muscle Fatigue , Musculoskeletal Manipulations , Humans , Muscle Fatigue/physiology , Neck Pain/therapy , Proprioception/physiology , Wrist , Wrist Joint
7.
PeerJ ; 10: e13495, 2022.
Article En | MEDLINE | ID: mdl-35646483

The purpose of this work was to investigate forearm muscle activity and wrist angular displacement during radial and ulnar wrist perturbations across various isometric hand grip demands. Surface electromyography (EMG) was recorded from eight muscles of the upper extremity. A robotic device delivered perturbations to the hand in the radial and ulnar directions across four pre-perturbation grip magnitudes. Angular displacement and time to peak displacement following perturbations were evaluated. Muscle activity was evaluated pre- and post-perturbation. Results showed an inverse relationship between grip force and angular displacement (p ≤ 0.001). Time to peak displacement decreased as grip force increased (p ≤ 0.001). There was an increase in muscle activity with higher grip forces across all muscles both pre-and post-perturbation (p ≤ 0.001) and a greater average muscle activity in ulnar as compared to radial deviation (p = 0.02). This work contributes to the wrist joint stiffness literature by relating wrist angular displacement to grip demands during novel radial/ulnar perturbations and provides insight into neuromuscular control strategies.


Forearm , Wrist , Forearm/physiology , Wrist/physiology , Biomechanical Phenomena , Hand Strength/physiology , Wrist Joint/physiology , Muscle, Skeletal/physiology
8.
Front Hum Neurosci ; 16: 887270, 2022.
Article En | MEDLINE | ID: mdl-35712530

Fatigue is a temporary condition that arises as a result of intense and/or prolonged use of muscles and can affect skilled human performance. Therefore, the quantitative analysis of these effects is a topic of crucial interest in both ergonomics and clinical settings. This study introduced a novel protocol, based on robotic techniques, to quantitatively assess the effects of fatigue on the human wrist joint. A wrist manipulandum was used for two concurrent purposes: (1) implementing the fatigue task and (2) assessing the functional changes both before and at four time points after the end of the fatigue task. Fourteen participants completed the experimental protocol, which included the fatigue task and assessment sessions over 2 days. Specifically, the assessments performed are related to the following indicators: (1) isometric forces, (2) biomechanical properties of the wrist, (3) position sense, and (4) stretch reflexes of the muscles involved. The proposed fatigue task was a short-term, submaximal and dynamic wrist flexion/extension task designed with a torque opposing wrist flexion. A novel task termination criterion was employed and based on a percentage decrease in the mean frequency of muscles measured using surface electromyography. The muscle fatigue analysis demonstrated a change in mean frequency for both the wrist flexors and extensors, however, only the isometric flexion force decreased 4 min after the end of the task. At the same time point, wrist position sense was significantly improved and stiffness was the lowest. Viscosity presented different behaviors depending on the direction evaluated. At the end of the experiment (about 12 min after the end of the fatigue task), wrist position sense recovered to pre-fatigue values, while biomechanical properties did not return to their pre-fatigue values. Due to the wide variety of fatigue tasks proposed in the literature, it has been difficult to define a complete framework that presents the dynamic of fatigue-related changes in different components associated with wrist function. This work enables us to discuss the possible causes and the mutual relationship of the changes detected after the same task.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6487-6490, 2021 11.
Article En | MEDLINE | ID: mdl-34892596

In this study, we implemented a protocol for the robotic assessment of the effects of forearm muscle fatigue on wrist dynamics. The potential of robotic devices lies in the possibility to control and measure a wide variety of kinematic and physiological variables, both in repeated sessions over time and during real-time assessments. The implemented fatigue task is tailored to the robotically assessed single-subject maximal force and based on a real-time evaluation of muscle activity. The protocol resulted to be repeatable across sessions evaluated on the same subject and a preliminary step toward a better understanding of which features should be monitored to design a robust and strongly controlled dynamic fatiguing task.


Muscle Fatigue , Wrist , Muscle, Skeletal , Upper Extremity , Wrist Joint
10.
Front Hum Neurosci ; 15: 726841, 2021.
Article En | MEDLINE | ID: mdl-34671248

In this study, we designed a robot-based method to compute a mechanical impedance model that could extract the viscoelastic properties of the wrist joint. Thirteen subjects participated in the experiment, testing both dominant and nondominant hands. Specifically, the robotic device delivered position-controlled disturbances in the flexion-extension degree of freedom of the wrist. The external perturbations were characterized by small amplitudes and fast velocities, causing rotation at the wrist joint. The viscoelastic characteristics of the mechanical impedance of the joint were evaluated from the wrist kinematics and corresponding torques. Since the protocol used position inputs to determine changes in mean wrist torque, a detailed analysis of wrist joint dynamics could be made. The scientific question was whether and how these mechanical features changed with various grip demands and perturbation velocities. Nine experimental conditions were tested for each hand, given by the combination of three velocity perturbations (fast, medium, and slow) and three hand grip conditions [self-selected grip, medium and high grip force, as percentage of the maximum voluntary contraction (MVC)]. Throughout the experiments, electromyographic signals of the extensor carpi radialis (ECR) and the flexor carpi radialis (FCR) were recorded. The novelty of this work included a custom-made soft grip sensor, wrapped around the robotic handle, to accurately quantify the grip force exerted by the subjects during experimentation. Damping parameters were in the range of measurements from prior studies and consistent among the different experimental conditions. Stiffness was independent of both direction and velocity of perturbations and increased with increasing grip demand. Both damping and stiffness were not different between the dominant and nondominant hands. These results are crucial to improving our knowledge of the mechanical characteristics of the wrist, and how grip demands influence these properties. This study is the foundation for future work on how mechanical characteristics of the wrist are affected in pathological conditions.

11.
J Neuroeng Rehabil ; 18(1): 130, 2021 08 31.
Article En | MEDLINE | ID: mdl-34465356

BACKGROUND: In recent years, many studies focused on the use of robotic devices for both the assessment and the neuro-motor reeducation of upper limb in subjects after stroke, spinal cord injuries or affected by neurological disorders. Contrarily, it is still hard to find examples of robot-aided assessment and rehabilitation after traumatic injuries in the orthopedic field. However, those benefits related to the use of robotic devices are expected also in orthopedic functional reeducation. METHODS: After a wrist injury occurred at their workplace, wrist functionality of twenty-three subjects was evaluated through a robot-based assessment and clinical measures (Patient Rated Wrist Evaluation, Jebsen-Taylor and Jamar Test), before and after a 3-week long rehabilitative treatment. Subjects were randomized in two groups: while the control group (n = 13) underwent a traditional rehabilitative protocol, the experimental group (n = 10) was treated replacing traditional exercises with robot-aided ones. RESULTS: Functionality, assessed through the function subscale of PRWE scale, improved in both groups (experimental p = 0.016; control p < 0.001) and was comparable between groups, both pre (U = 45.5, p = 0.355) and post (U = 47, p = 0.597) treatment. Additionally, even though groups' performance during the robotic assessment was comparable before the treatment (U = 36, p = 0.077), after rehabilitation the experimental group presented better results than the control one (U = 26, p = 0.015). CONCLUSIONS: This work can be considered a starting point for introducing the use of robotic devices in the orthopedic field. The robot-aided rehabilitative treatment was effective and comparable to the traditional one. Preserving efficacy and safety conditions, a systematic use of these devices could lead to decrease human therapists' effort, increase repeatability and accuracy of assessments, and promote subject's engagement and voluntary participation. Trial Registration ClinicalTrial.gov ID: NCT04739644. Registered on February 4, 2021-Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/study/NCT04739644 .


Robotics , Stroke Rehabilitation , Stroke , Humans , Upper Extremity , Wrist , Wrist Joint
12.
Eur J Phys Rehabil Med ; 57(5): 831-840, 2021 Oct.
Article En | MEDLINE | ID: mdl-34042413

INTRODUCTION: The rapid development of electromechanical and robotic devices has profoundly influenced neurorehabilitation. Growth in the scientific and technological aspects thereof is crucial for increasing the number of newly developed devices, and clinicians have welcomed such growth with enthusiasm. Nevertheless, improving the standard for the reporting clinical, technical, and normative aspects of such electromechanical and robotic devices remains an unmet need in neurorehabilitation. Accordingly, this study aimed to analyze the existing literature on electromechanical and robotic devices used in neurorehabilitation, considering the current clinical, technical, and regulatory classification systems. EVIDENCE ACQUISITION: Within the CICERONE Consensus Conference framework, studies on electromechanical and robotic devices used for upper- and lower-limb rehabilitation in persons with neurological disabilities in adulthood and childhood were reviewed. We have conducted a literature search using the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, Science Direct, and Google Scholar. Clinical, technical, and regulatory classification systems were applied to collect information on the electromechanical and robotic devices. The study designs and populations were investigated. EVIDENCE SYNTHESIS: Overall, 316 studies were included in the analysis. More than half (52%) of the studies were randomised controlled trials (RCTs). The population investigated the most suffered from strokes, followed by spinal cord injuries, multiple sclerosis, cerebral palsy, and traumatic brain injuries. In total, 100 devices were described; of these, 19% were certified with the CE mark. Overall, the main type of device was an exoskeleton. However, end-effector devices were primarily used for the upper limbs, whereas exoskeletons were used for the lower limbs (for both children and adults). CONCLUSIONS: The current literature on robotic neurorehabilitation lacks detailed information regarding the technical characteristics of the devices used. This affects the understanding of the possible mechanisms underlying recovery. Unfortunately, many electromechanical and robotic devices are not provided with CE marks, strongly hindering the research on the clinical outcomes of rehabilitation treatments based on these devices. A more significant effort is needed to improve the description of the robotic devices used in neurorehabilitation in terms of the technical and functional details, along with high-quality RCT studies.


Exoskeleton Device , Neurological Rehabilitation , Robotic Surgical Procedures , Robotics , Adult , Child , Humans , Upper Extremity
13.
Front Hum Neurosci ; 15: 662768, 2021.
Article En | MEDLINE | ID: mdl-33967724

A deep investigation of proprioceptive processes is necessary to understand the relationship between sensory afferent inputs and motor outcomes. In this work, we investigate whether and how perception of wrist position is influenced by the direction along which the movement occurs. Most previous studies have tested Joint Position Sense (JPS) through 1 degree of freedom (DoF) wrist movements, such as flexion/extension (FE) or radial/ulnar deviation (RUD). However, the wrist joint has 3-DoF and many activities of daily living produce combined movements, requiring at least 2-DoF wrist coordination. For this reason, in this study, target positions involved movement directions that combined wrist flexion or extension with radial or ulnar deviation. The chosen task was a robot-aided Joint Position Matching (JPM), in which blindfolded participants actively reproduced a previously passively assumed target joint configuration. The JPM performance of 20 healthy participants was quantified through measures of accuracy and precision, in terms of both perceived target direction and distance along each direction of movement. Twelve different directions of movement were selected and both hands tested. The left and right hand led to comparable results, both target extents and directions were differently perceived according to the target direction on the FE/RUD space. Moreover, during 2-DoF combined movements, subjects' perception of directions was impaired when compared to 1-DoF target movements. In summary, our results showed that human perception of wrist position on the FE/RUD space is symmetric between hands but not isotropic among movement directions.

14.
Front Neurorobot ; 15: 640551, 2021.
Article En | MEDLINE | ID: mdl-33732131

Position sense refers to an aspect of proprioception crucial for motor control and learning. The onset of neurological diseases can damage such sensory afference, with consequent motor disorders dramatically reducing the associated recovery process. In regular clinical practice, assessment of proprioceptive deficits is run by means of clinical scales which do not provide quantitative measurements. However, existing robotic solutions usually do not involve multi-joint movements but are mostly applied to a single proximal or distal joint. The present work provides a testing paradigm for assessing proprioception during coordinated multi-joint distal movements and in presence of kinaesthetic perturbations: we evaluated healthy subjects' ability to match proprioceptive targets along two of the three wrist's degrees of freedom, flexion/extension and abduction/adduction. By introducing rotations along the pronation/supination axis not involved in the matching task, we tested two experimental conditions, which differed in terms of the temporal imposition of the external perturbation: in the first one, the disturbance was provided after the presentation of the proprioceptive target, while in the second one, the rotation of the pronation/ supination axis was imposed during the proprioceptive target presentation. We investigated if (i) the amplitude of the perturbation along the pronation/supination would lead to proprioceptive miscalibration; (ii) the encoding of proprioceptive target, would be influenced by the presentation sequence between the target itself and the rotational disturbance. Eighteen participants were tested by means of a haptic neuroergonomic wrist device: our findings provided evidence that the order of disturbance presentation does not alter proprioceptive acuity. Yet, a further effect has been noticed: proprioception is highly anisotropic and dependent on perturbation amplitude. Unexpectedly, the configuration of the forearm highly influences sensory feedbacks, and significantly alters subjects' performance in matching the proprioceptive targets, defining portions of the wrist workspace where kinaesthetic and proprioceptive acuity are more sensitive. This finding may suggest solutions and applications in multiple fields: from general haptics where, knowing how wrist configuration influences proprioception, might suggest new neuroergonomic solutions in device design, to clinical evaluation after neurological damage, where accurately assessing proprioceptive deficits can dramatically complement regular therapy for a better prediction of the recovery path.

15.
Article En | MEDLINE | ID: mdl-33345044

Due to their stabilizing role, the wrist extensor muscles demonstrate an earlier onset of performance fatigability and may impair movement accuracy more than the wrist flexors. However, minimal fatigue research has been conducted at the wrist. Thus, the purpose of this study was to examine how sustained isometric contractions of the wrist extensors/flexors influence hand-tracking accuracy. While gripping the handle of a three-degrees-of-freedom wrist manipulandum, 12 male participants tracked a 2:3 Lissajous curve (±32° wrist flexion/extension; ±18° radial/ulnar deviation). A blue, circular target moved about the trajectory and participants tracked the target with a yellow circle (corresponding to the handle's position). Five baseline tracking trials were performed prior to the fatiguing task. Participants then exerted either maximal wrist extension or flexion force (performed on separate days) against a force transducer until they were unable to maintain 25% of their pre-fatigue maximal voluntary contraction (MVC). Participants then performed 7 tracking trials from immediately post-fatigue to 10 min after. Performance fatigability was assessed using various metrics to account for errors in position-tracking, error tendencies, and movement smoothness. While there were no differences in tracking error between flexion/extension sessions, tracking error significantly increased immediately post-fatigue (Baseline: 1.40 ± 0.54°, Post-fatigue: 2.02 ± 0.51°, P < 0.05). However, error rapidly recovered, with no differences in error from baseline after 1-min post-fatigue. These findings demonstrate that sustained isometric extension/flexion contractions similarly impair tracking accuracy of the hand. This work serves as an important step to future research into workplace health and preventing injuries of the distal upper-limb.

16.
Front Sports Act Living ; 2: 574650, 2020.
Article En | MEDLINE | ID: mdl-33345137

We evaluated the effects of muscle fatigue on hand-tracking performance in young adults. Differences were quantified between wrist flexion and extension fatigability, and between males and females. Participants were evaluated on their ability to trace a pattern using a 3-degrees-of-freedom robotic manipulandum before (baseline) and after (0, 1, 2, 4, 6, 8, and 10 mins) a submaximal-intensity fatigue protocol performed to exhaustion that isolated the wrist flexors or extensors on separate days. Tracking tasks were performed at all time points, while maximal voluntary contractions (MVCs) were performed at baseline, and 2, 6-, and 10-mins post-task termination. We evaluated movement smoothness (jerk ratio, JR), shape reproduction (figural error, FE), and target tracking accuracy (tracking error, TE). MVC force was significantly lower in females (p < 0.05), lower than baseline for all timepoints after task termination (p < 0.05), with no muscle group-dependent differences. JR did not return to baseline until 10-mins post-task termination (most affected), while FE returned at 4-mins post-task termination, and TE at 1-min post-task termination. Males tracked the target with significantly lower JR (p < 0.05), less TE (p < 0.05), and less FE (p < 0.05) than females. No muscle group-dependent changes in hand-tracking performance were observed. Based on this work, hand tracking accuracy is similarly impaired following repetitive submaximal dynamic wrist flexion or extension. The differences between male and female fatigability was independent of the changes in our tracking metrics.

17.
J Biomech ; 108: 109897, 2020 07 17.
Article En | MEDLINE | ID: mdl-32636008

Functioning as wrist stabilizers, the wrist extensor muscles exhibit higher levels of muscle activity than the flexors in most distal upper-limb tasks. However, this finding has been derived mostly from isometric or wrist flexion-extension protocols, with little consideration for wrist dynamics or radial-ulnar wrist deviations. The purpose of this study was to assess forearm muscle activity during the execution of dynamic wrist radial-ulnar deviation in various forearm orientations (pronation/supination). In 12 healthy university-aged males, surface electromyography (EMG) was recorded from eight muscles of the dominant arm: flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU), extensor digitorum (ED), biceps brachii (BB) and triceps brachii (TB). While grasping a handle, participants performed dynamic radial-ulnar deviation using a three-degrees-of-freedom wrist manipulandum. The robotic device applied torque to the handle, in either a radial or ulnar direction, and in one of three forearm postures (30° supinated/neutral/30° pronated). Results indicated that forearm posture influenced the muscles acting upon the hand (FDS/ED), whereas movement phase (concentric-eccentric) and torque direction influenced nearly every muscle. The ECR demonstrated the greatest task-dependency of all forearm muscles, which is possibly reflective of forearm muscle lines of action. Co-contraction ratios were much higher in radial trials than ulnar (Radial: 1.20 ± 0.78, Ulnar: 0.28 ± 0.18, P < 0.05), suggesting greater FCU and ECU contribution to wrist joint stability in radial-ulnar movement. These findings highlight a greater complexity of wrist extensor function than has previously been reported in isometric work.


Robotics , Wrist , Aged , Animals , Forearm , Humans , Male , Muscle, Skeletal , Universities , Wrist Joint
18.
J Biomech ; 108: 109908, 2020 07 17.
Article En | MEDLINE | ID: mdl-32636014

Current research suggests that the wrist extensor muscles function as the primary stabilizers of the wrist-joint complex. However, most investigations have utilized isometric study designs, with little consideration for wrist dynamics or changes in posture. The purpose of the present study was to assess forearm muscle activity during the execution of dynamic wrist flexion/extension in multiple forearm orientations (pronation/supination). In 12 young adult males, surface electromyography (EMG) was recorded from eight muscles of the dominant arm: flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU), extensor digitorum (ED), biceps brachii (BB) and triceps brachii (TB). While grasping a handle, participants performed dynamic wrist flexion/extension using a three-degrees-of-freedom wrist manipulandum. The robotic device applied torque to the handle, in either a flexion or extension direction, and in one of three forearm postures (30° supinated/neutral/30° pronated). Results indicated that forearm posture had minimal influence on forearm muscle activity, but significantly altered the activity of the biceps and triceps brachii. Movement phase (concentric-eccentric) dictated muscle activity in every muscle. Interestingly, muscle activity in the eccentric phase was equal between the two applied handle torques, regardless of whether the muscle acted as the agonist or antagonist. Co-contraction ratios were higher in the flexion conditions (flexion: 2.28 ± 2.04, extension: 0.32 ± 0.27), suggesting significantly greater wrist extensor activity-likely a contribution to wrist joint stability. This highlights the vulnerability of the wrist extensor muscles to overuse injuries in settings requiring prolonged use of dynamic wrist exertions.


Robotics , Wrist , Electromyography , Forearm , Humans , Male , Muscle, Skeletal , Range of Motion, Articular , Wrist Joint , Young Adult
19.
Sci Rep ; 10(1): 8470, 2020 05 21.
Article En | MEDLINE | ID: mdl-32439947

Balancing the body in upright standing and balancing a stick on the fingertip are two examples of unstable tasks that, in spite of strong motor and sensory differences, appear to share a similar motor control paradigm, namely a state-space intermittent feedback stabilization mechanism. In this study subjects were required to perform the two tasks simultaneously, with the purpose of highlighting both the coordination between the two skills and the underlying interaction between the corresponding controllers. The experimental results reveal, in particular, that upright standing (the less critical task) is modified in an adaptive way, in order to facilitate the more critical task (stick balancing), but keeping the overall spatio-temporal signature well known in regular upright standing. We were then faced with the following question: to which extent the physical/biomechanical interaction between the two independent intermittent controllers is capable to explain the dual task coordination patterns, without the need to introduce an additional, supervisory layer/module? By comparing the experimental data with the output of a simulation study we support the former hypothesis, suggesting that it is made possible by the intrinsic robustness of both state-space intermittent feedback stabilization mechanisms.


Fingers/physiology , Models, Theoretical , Postural Balance/physiology , Posture/physiology , Psychomotor Performance/physiology , Standing Position , Adult , Feedback , Female , Humans , Male , Task Performance and Analysis , Young Adult
20.
Sci Rep ; 10(1): 4953, 2020 03 18.
Article En | MEDLINE | ID: mdl-32188936

Balance requires the centre of mass to be maintained within the base of support. This can be achieved by minimising position sway (stiffness control: SC) or minimising force error (force accuracy control: FAC). Minimising sway reduces exploration of system properties, whereas minimising force error maximizes accurate mapping of the force vs position. We hypothesise that (i) FAC is associated with faster learning and fewer falls whereas (ii) SC is not. Fifteen participants used myoelectric signals from their legs to maintain balance of an actuated, inverted pendulum, to which they were strapped. Using challenging perturbations, participants were trained to maintain balance without falling within five sessions and tested before (PRE) and after (POST) training. We quantified FAC as 'change (POST-PRE) in correlation of force with position' and SC as 'change in sway'. PRE training, five measures (sway, acceleration, co-contraction, effort, falls) showed no correlation with either FAC or SC. POST training, reduced fall rate, effort and acceleration correlated with FAC metric. SC correlated only with reduced sway. Unlike sway minimisation, development of force accuracy was associated with learning and reduced falls. These results support that accurate force estimation allowing movement is more relevant than stiffness to improve balance and prevent falls.


Accidental Falls/prevention & control , Mechanotransduction, Cellular , Movement , Postural Balance , Psychomotor Performance , Adult , Body Composition , Female , Humans , Male , Middle Aged
...