Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 86(10): 313-325, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37010980

RESUMEN

The aim of this study was to determine the biological effects of dietary supplementation with 0.05% and 0.1% cinnamon essential oil extracted from Cinnamomum cassia on silver catfish (Rhamdia quelen). The final body weight, weight gain, and specific growth rate were significantly higher in fish supplemented with 0.05% cinnamon essential oil than in the control(untreated) group. Muscle reactive oxygen species and lipid peroxidation levels were significantly lower in fish supplemented with 0.05% cinnamon essential oil but higher at the 0.1% concentration. Muscle antioxidant capacity against peroxyl radicals (ACAP) and superoxide dismutase activity were significantly higher in fish supplemented with 0.05% cinnamon essential oil, while ACAP levels were lower in fish supplemented with 0.1%. The total saturated fatty acid content was significantly higher in the muscle of supplemented fish than in controls, while the total monounsaturated fatty acid content was significantly higher only in fish fed 0.1% cinnamon essential oil. Finally, the total content of polyunsaturated fatty acids was significantly lower in fish fed 0.1% essential oil. Thus, data demonstrated that 0.05% C. cassia essential oil improves fish health by improving performance and muscle oxidant/antioxidant status. Higher doses of cinnamon essential oil produced oxidative stress in muscle, suggesting toxicity at the 0.1% level. Although this cinnamon essential oil diet exerted positive health effects, this diet impaired the muscle fatty acid profile, suggesting adverse impacts on human health.


Asunto(s)
Bagres , Cinnamomum aromaticum , Aceites Volátiles , Animales , Humanos , Antioxidantes , Ácidos Grasos , Suplementos Dietéticos , Músculos , Aceites Volátiles/toxicidad
2.
Ecotoxicol Environ Saf ; 205: 111127, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32846293

RESUMEN

Trichlorfon is an organophosphate insecticide that is widely used on fish farms to control parasitic infections. It has been detected in freshwater ecosystems as well as in fishery products. There is a growing body of evidence to suggest that certain feed additives may reduce or prevent pesticide-induced toxicity in fish. The aim of the present study was to determine whether acute exposure to trichlorfon would alter bioenergetic homeostasis and alter fatty acid profiles in muscles of silver catfish (Rhamdia quelen). We also sought to determine whether rutin prevents or reduces these effects. Cytosolic and mitochondrial creatine kinase (CK) and activities of complexes II-III and IV in muscle were significantly inhibited by exposure to 11 mg/L trichlorfon for 48 h compared to effects in the unexposed group. Total content of polyunsaturated fatty acids (omega-3 and omega-6) were significantly lower in muscle of silver catfish exposed to 11 mg/L trichlorfon for 48 h than in the unexposed group. Addition of 3 mg rutin/kg feed increased CK activity and prevented inhibition of complex IV activity, as well as preventing all alterations of muscle fatty acid profiles elicited by exposure to trichlorfon. No significant differences were observed between groups with respect to muscle adenylate kinase or pyruvate kinase activities, as well as total content of saturated and monounsaturated fatty acids. Our findings suggest that exposure (48 h) to 11 mg trichlorfon/L water inhibits cytosolic and mitochondrial CK activity in muscle. Trichlorfon also affects activities of complexes II-III and IV in respiratory chain, with important consequences for adenosine triphosphate production. The pesticide alters fatty acid profiles in the fish and endangers human consumers of the product. The most important finding of the present study is that inclusion of rutin improves bioenergetic homeostasis and muscle fatty acid profiles, suggesting that it reduces trichlorfon-induced muscle damage.


Asunto(s)
Bagres/metabolismo , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Insecticidas/toxicidad , Músculos/efectos de los fármacos , Rutina/farmacología , Triclorfón/toxicidad , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Alimentación Animal , Animales , Bagres/crecimiento & desarrollo , Creatina Quinasa/metabolismo , Dieta , Aditivos Alimentarios , Homeostasis , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-32169414

RESUMEN

The trend toward using plant-based ingredients in aquafeeds has raised important concerns for aquaculture owing to the negative impacts of mycotoxins on fish health; with emphasis for contamination by fumonisin B1 (FB1). The brain is an important target of FB1; however, study of the pathways linked to brain damage is limited to an analysis of histopathological alterations. Reports have demonstrated the protective effects of dietary supplementation with diphenyl diselenide (Ph2Se2) in the brains of fish subjected to several environmental insults; nevertheless, its neuroprotective effects in fish fed with diets contaminated with FB1 remain unknown. Therefore, the aim of this study was to evaluate whether oxidative damage may be a pathway associated with FB1-induced neurotoxicity, as well as to evaluate whether dietary supplementation with Ph2Se2 prevents or reduces FB1-mediated brain oxidative damage in silver catfish. Brain reactive oxygen species (ROS), lipid peroxidation (LOOH) and protein carbonylation increased on day 30 post-feeding in animals that received FB1-contaminated diets compared to the control group, while brain antioxidant capacity against peroxyl radicals (ACAP) levels and catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were lower. Diphenyl diselenide dietary supplementation avoid increases in brain ROS levels, as well minimizing the augmentation of LOOH levels. Furthermore, Ph2Se2 prevented impairment of brain ACAP levels, as well as GPx and GST activities elicited by FB1-contaminated diets. These data suggest that dietary supplementation with 3 mg/kg Ph2Se2 prevented FB1-induced brain damage in silver catfish, and this protective effect occurred through avoided of excessive ROS production, as well as via prevention of brain lipid damage. Furthermore, Ph2Se2 exerted its neuroprotective effects via ameliorative effects on the enzymatic and non-enzymatic antioxidant defense systems, and may be an approach to prevent FB1-induced brain oxidative stress; however, is not an alternative to prevent the impairment on performance caused by FB1.


Asunto(s)
Antioxidantes , Derivados del Benceno , Encéfalo , Bagres/metabolismo , Fumonisinas/toxicidad , Compuestos de Organoselenio , Estrés Oxidativo/efectos de los fármacos , Alimentación Animal , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Derivados del Benceno/administración & dosificación , Derivados del Benceno/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Compuestos de Organoselenio/administración & dosificación , Compuestos de Organoselenio/farmacología , Carbonilación Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-30910599

RESUMEN

Mycotoxins are secondary metabolites produced by varieties of fungi that contaminate food and feed resources and are capable of inducing a wide range of toxicity. This problem is extensively aggravated due to the increasing replacement of fish meal by plant-derived proteins. Among the mycotoxins, aflatoxins have received a great deal of attention owing to their great prevalence in plant feedstuffs and to the detrimental effects on animals. The objective of this study was to evaluate whether dietary supplementation with tea tree (Melaleuca alternifolia) oil (TTO) would avoid or minimize the negative impacts on silver catfish (Rhamdia quelen) fed with aflatoxins-contaminated diets. Four treatments were tested: control (fish fed with a control diet); AFB (fish fed with a mycotoxin-contaminated diet - 1893 µg kg-1 of AFB1 and 52.2 µg kg-1 AFB2); TTO (fish fed with a control diet + 1 mL kg-1 of TTO), and TTO + AFB (fish fed with a mycotoxin contaminated diet - 2324 µg kg-1 of AFB1 and 43.5 µg kg-1 AFB2 + 1 mL kg-1 of TTO). Diets were tested in three replications and analyzed at days 5 and 10 of dietary intake. Significantly reduced antioxidant enzymes (SOD, GPx, and GST) and increased lipid peroxidation (LOOH) and protein carbonyl (PC) content in plasma and liver, with 16.6% mortality occurrence, were observed in the group fed aflatoxin-contaminated diet. Furthermore, aflatoxins also significantly increased plasmatic and hepatic ROS levels and decreased hepatic antioxidant capacity against peroxyl radical (ACAP) levels. Plasma cortisol levels were not altered by aflatoxicosis, but the intoxication induced hepatose. Notwithstanding, addition of TTO to the groups receiving aflatoxins showed a protective effect, avoiding the increase of ROS, LOOH, and PC levels in plasma and liver. Moreover, TTO treatment ameliorated the aflatoxin-associated liver damage. Thus, TTO supplementation at concentration of 1 mL kg-1 in feed may be used in fish to increase antioxidant status and reduce the negative effects caused by aflatoxins toxicity.


Asunto(s)
Aflatoxinas/toxicidad , Alimentación Animal/análisis , Bagres , Enfermedad Hepática Inducida por Sustancias y Drogas/veterinaria , Enfermedades de los Peces/inducido químicamente , Aceite de Árbol de Té/farmacología , Animales , Antiinfecciosos Locales/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Contaminación de Alimentos , Hidrocortisona , Distribución Aleatoria , Aceite de Árbol de Té/administración & dosificación
5.
Microb Pathog ; 129: 271-276, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30802491

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen in aquaculture systems being associated to extensive liver damage caused by oxidative stress in both marine and freshwater fish. Dietary supplementation with natural antioxidants is considered a rational strategy to prevent hepatic diseases involved with oxidative stress. Bio-residues resulting from the wine industry, such as grape pomace, are potential sources of bioactive phenolic compounds that can be applied as supplement for animal production. Thus, the aim of this study was to evaluate whether dietary supplementation with grape pomace flour (GPF) was able to prevent or reduce the hepatic oxidative damage of grass carp, Ctenopharyngodon idella, experimentally infected by P. aeruginosa. Hepatic reactive oxygen species (ROS), metabolites of nitric oxide (NOx), thiobarbituric acid reactive substances, and protein carbonylation levels were higher in fish experimentally infected by P. aeruginosa compared to the control group. Hepatic superoxide dismutase and catalase activities and antioxidant capacity against peroxyl radical levels were also higher in fish experimentally infected by P. aeruginosa compared to the control group. Dietary supplementation with 300 mg/kg GPF prevented all alterations elicited by P. aeruginosa, with the exception of protein carbonylation levels. The dietary supplementation with 150 mg/kg GPF was not able to avoid alteration of the analyzed variables, being results similar to those infected (positive control). Based on these results, dietary supplementation with 300 mg/kg GPF prevented P. aeruginosa-induced liver damage in grass carp, and this protective effect occurred through prevention on excessive ROS and NOx production, as well as via prevention of lipid damage. Moreover, 300 mg/kg GPF exerted its hepatoprotective effects by improving enzymatic and non-enzymatic antioxidant defense system. In summary, this supplementation can be an interesting approach to prevent P. aeruginosa-induced liver damage.


Asunto(s)
Antioxidantes/administración & dosificación , Dietoterapia/métodos , Enfermedades de los Peces/terapia , Hepatopatías/veterinaria , Estrés Oxidativo , Infecciones por Pseudomonas/veterinaria , Vitis/química , Animales , Carpas , Catalasa/análisis , Enfermedades de los Peces/patología , Harina , Hepatopatías/patología , Hepatopatías/terapia , Óxido Nítrico/análisis , Carbonilación Proteica , Infecciones por Pseudomonas/patología , Infecciones por Pseudomonas/terapia , Especies Reactivas de Oxígeno/análisis , Superóxido Dismutasa/análisis , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Resultado del Tratamiento
6.
Fish Physiol Biochem ; 45(1): 63-70, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29978351

RESUMEN

Aflatoxin B1 (AFB1) is an environmental toxicant and neurotoxic compound that induces the production of free radicals, causing oxidative stress. Creatine kinase (CK) is a central controller of energy metabolism in tissues with a large and fluctuating energy demand, and it is highly susceptible to inactivation by free radicals and oxidative damage. Thus, the aim of this study was to evaluate whether a diet for freshwater silver catfish (Rhamdia quelen) containing AFB1 inhibits cerebral CK activity, as well as the involvement of the oxidative stress on this inhibition. Brain CK activity was lower on days 14 and 21 post-feeding in animals that received AFB1-contaminated diet compared to the control group (basal diet), similarly to the brain sodium-potassium pump (Na+, K+-ATPase) activity. On the other hand, lipid peroxidation and protein carbonylation levels were higher on days 14 and 21 post-feeding in animals fed with AFB1-contaminated feed compared to the control group, while the antioxidant capacity against peroxyl radicals and thiol content was lower. Based on these evidences, the data demonstrated that diet containing AFB1 severely affects CK activity, an essential enzyme that plays an important role in brain energy homeostasis. Also, the impairment of energetic homeostasis linked with the use and generation of ATP via inhibition of CK activity elicited an inhibition of enzymes ATP-dependent, such as Na+, K+-ATPase. Moreover, the inhibition of brain CK activity appears to be mediated by the oxidation of lipids, proteins, and thiol group, as well as by a reduction in the antioxidant capacity.


Asunto(s)
Aflatoxina B1/toxicidad , Alimentación Animal/análisis , Bagres/fisiología , Cerebro/enzimología , Creatina Quinasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Creatina Quinasa/antagonistas & inhibidores , Dieta/veterinaria , Contaminación de Alimentos , Venenos/toxicidad
7.
Ciênc. rural (Online) ; 49(1): e20180218, 2019. tab
Artículo en Inglés | LILACS | ID: biblio-1045231

RESUMEN

ABSTRACT: Anesthetics are effective to reduce or minimize stress in handling operations related to fish cultures. Aiming to avoid residual effects of synthetic drugs, several natural agents, such as essential oils (EOs), have been tested. The aim of this study was to determine the optimal concentration of the EO of Ocimum micranthum for induction of anesthesia in juveniles of silver catfish (Rhamdia quelen) and grass carp (Ctenopharyngodon idella). Results demonstrated that the most suitable concentration to sedate silver catfish and carp is 25μL/L, while to anesthetize 200μL/L is more suitable for silver catfish and 100μL/L for grass carp, because these concentrations induce deep anesthesia in less than three min and recovery in less than five min. Analysis of the EO constituents showed methyl chavicol, a compound with carcinogenic potential, as the major component (58.2%). Therefore, the EO of O. micranthum is not recommended for fish anesthesia if the fish are to be used as food.


RESUMO: Os anestésicos são eficazes para reduzir ou minimizar o estresse nas operações de manuseio relacionadas à piscicultura. Com o objetivo de evitar efeitos residuais de fármacos sintéticos, vários agentes naturais, como óleos essenciais (OEs), têm sido testados. O objetivo deste estudo foi determinar a concentração ótima do OE de Ocimum micranthum para a indução de anestesia em juvenis de jundiá (Rhamdia quelen) e carpa capim (Ctenopharyngodon idella). Os resultados demonstram que a concentração mais adequada para sedar jundiás e carpas capim é 25μL/L. Enquanto que para anestesiar 200μL/L é mais adequado para jundiás e 100μL/L para carpas capim, pois essas concentrações induzem anestesia profunda em menos de três minutos e recuperação em menos de cinco minutos. A análise dos constituintes do OE identificou o metil chavicol, um composto com potencial carcinogênico, como componente majoritário (58,2%). Portanto, o OE de O. micranthum não é recomendado para anestesia de peixes usado como alimento.

8.
Microb Pathog ; 123: 449-453, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30086344

RESUMEN

The spleen is an important secondary lymphatic organ that plays a key role in the immune and inflammatory responses of teleost fish. The purinergic signalling has been associated to these types of responses under pathological conditions by the regulation of extracellular adenosine triphosphate (ATP) and its metabolite adenosine (Ado), where both exert potent pro-inflammatory and anti-inflammatory profiles, respectively. The exact pathway involved on the immunotoxic effects of aflatoxin B1 (AFB1) in fish fed with diets containing this mycotoxin remains poorly understood. Thus, the aim of this study was to evaluate whether purinergic signalling exerts anti or pro-inflammatory effects in spleen and splenic lymphocytes of Rhamdia quelen fed with a diet contaminated by AFB1. Ectonucleoside triphosphate diphosphohydrolase (NTPDase) activity (ATP as substrate) decreased in spleen and splenic lymphocytes of fish fed with an AFB1-contaminated diet on day 21 post-feeding compared to fish fed with a basal diet; while adenosine deaminase (ADA) activity increased. No differences were observed between groups or over time regarding NTPDase (adenosine diphosphate as substrate) and 5'-nucleotidase activities. In summary, the purinergic signalling can be a pathway involved in the impairment of the immune and inflammatory responses in fish fed with an AFB1-contaminated diet, contributing to the immunotoxic effects of AFB1 in spleens of fish.


Asunto(s)
Aflatoxina B1/toxicidad , Dieta , Enfermedades de los Peces/inmunología , Inmunotoxinas/toxicidad , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Aflatoxina B1/inmunología , Alimentación Animal/microbiología , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Bagres , Modelos Animales de Enfermedad , Enfermedades de los Peces/microbiología , Contaminación de Alimentos , Hongos/metabolismo , Linfocitos/inmunología , Nucleotidasas/metabolismo , Bazo/inmunología
9.
Microb Pathog ; 124: 82-88, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30138754

RESUMEN

It has been recognized that oxidative stress is implicated in the initiation and progression of diseases due to the excessive formation of free radicals and impairment of the antioxidant defense system, contributing to the mortality of affected animals. The occurrence of a disequilibrium between the antioxidant/oxidant status in serum and liver of freshwater fish fed with aflatoxin B1 (AFB1) remains poorly understood and limited to only a few oxidant variables. Thus, the aim of this study was to evaluate whether an AFB1-contaminated diet causes disturbance on the antioxidant and oxidant status in silver catfish (Rhamdia quelen) of freshwater. Serum and hepatic reactive oxygen species (ROS), metabolites of nitric oxide (NOx), and lipid hydroperoxide increased on days 14 and 21 post-feeding in animals that received AFB1 contaminated diet compared to the control group (basal diet), while protein carbonylation levels increased on day 21 post-feeding. On the other hand, serum and hepatic antioxidant capacity against peroxyl radical and vitamin C levels, as well as glutathione peroxidase and catalase activities were lower on days 14 and 21 post-feeding in animals that received AFB1 contaminated diet compared to the control group. No difference was observed between groups regarding the superoxide dismutase activity and glutathione levels. Based on these evidences, an AFB1-contaminated diet causes a disturbance on serum and hepatic antioxidant/oxidant system due to lipid and protein damage elicited by excessive ROS and NOx production. Also, the antioxidant defense system was unable to avoid or minimize ROS and NOx deleterious effects, and consequently, the oxidative damage. In summary, this disturbance can contribute to understand the pathophysiology and mortality of fish after the consumption of AFB1-contaminated diets.


Asunto(s)
Aflatoxina B1/toxicidad , Bagres , Enfermedades de los Peces/patología , Hígado/patología , Intoxicación/veterinaria , Venenos/toxicidad , Suero/química , Administración Oral , Aflatoxina B1/administración & dosificación , Experimentación Animal , Animales , Antioxidantes/análisis , Peróxidos Lipídicos/análisis , Hígado/efectos de los fármacos , Óxido Nítrico/análisis , Estrés Oxidativo , Intoxicación/patología , Venenos/administración & dosificación , Carbonilación Proteica , Especies Reactivas de Oxígeno/análisis , Factores de Tiempo
10.
J Food Sci Technol ; 55(4): 1416-1425, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606756

RESUMEN

This study evaluated whether the essential oil of Lippia alba (EO) used as a sedative for fish transport would increase the stability of silver catfish during ice storage. Fish were transported (6 h) with water alone (control), 30 or 40 µL/L of EO in water. After transport, fish were slaughtered and stored in ice. Data on mesophilic and psychrotrophic bacteria counts during storage did not support the evidence for the antimicrobial activity of EO. However, fish treated with EO (30 and 40 µL/L) had delayed onset of rigor mortis, delayed increase of pH after 34 days of storage, and delayed peak of hypoxanthine formation and its degradation. In addition, the demerit sensory score of EO-treated fish (30 and 40 µL/L) was lower than that of controls along the storage. Thus, the use of EO as a sedative in the water used to transport silver catfish can delay the loss of freshness and the deterioration of whole fish stored in ice.

11.
Environ Toxicol Pharmacol ; 60: 45-51, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29660609

RESUMEN

It is known that the cytotoxic effects of aflatoxin B1 (AFB1) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB1-contaminated diet (1177 ppb kg feed-1) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB1, while activity of the sodium-potassium pump (Na+, K+-ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na+, K+-ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB1 intoxication.


Asunto(s)
Aflatoxina B1/toxicidad , Alimentación Animal/toxicidad , Bagres/fisiología , Neurotransmisores/metabolismo , Sinaptosomas/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Proteínas de Peces/metabolismo , Contaminación de Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sinaptosomas/efectos de los fármacos
12.
Fish Physiol Biochem ; 44(4): 1051-1059, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29546539

RESUMEN

The phosphotransfer network system, through the enzymes creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), contributes to efficient intracellular energetic communication between cellular adenosine triphosphate (ATP) consumption and production in tissues with high energetic demand, such as cerebral tissue. Thus, the aim of this study was to evaluate whether aflatoxin B1 (AFB1) intoxication in diet negatively affects the cerebral phosphotransfer network related to impairment of cerebral ATP levels in silver catfish (Rhamdia quelen). Brain cytosolic CK activity decreased in animals fed with a diet contaminated with AFB1 on days 14 and 21 post-feeding, while mitochondrial CK activity increased, when compared to the control group (basal diet). Also, cerebral AK and PK activity decreased in animals fed with a diet contaminated with AFB1 on days 14 and 21 post-feeding, similarly to the results observed for cerebral ATP levels. Based on this evidence, inhibition of cerebral cytosolic CK activity is compensated by stimulation of mitochondrial CK activity in an attempt to prevent impairment of communication between sites of ATP generation and ATP utilization. The inhibition of cerebral AK and PK activity leads to impairment of cerebral energy homeostasis, decreasing the brain's ATP availability. Moreover, the absence of a reciprocal compensatory mechanism between these enzymes contributes to cerebral energetic imbalance, which may contribute to disease pathophysiology.


Asunto(s)
Aflatoxina B1/toxicidad , Bagres/fisiología , Corteza Cerebral/fisiopatología , Dieta/veterinaria , Enfermedades de los Peces/fisiopatología , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Creatina Quinasa/metabolismo , Metabolismo Energético , Enfermedades de los Peces/inducido químicamente , Contaminación de Alimentos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucólisis , Homeostasis , Fosforilación , Piruvato Quinasa/metabolismo
13.
Microb Pathog ; 116: 237-240, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29407233

RESUMEN

The antibiotics were frequently used for combating bacterial infections in aquaculture, but this treatment causes antibiotic resistance, negative impact on the environment and on health, and accumulation of residual in edible tissues. Several evidences have considered the dietary supplementation with natural products an interesting alternative to antibiotics, as the use of curcumin, a polyphenol with anti-inflammatory, antioxidant and antimicrobial properties. Thus, the aim of this study was to evaluate whether fish fed with a diet containing 150 mg curcumin/kg feed is able to enhance the resistance of silver catfish to Streptococcus agalactiae infection. Our results demonstrated that curcumin dietary supplement exerts potent bactericidal action against S. agalactiae, presenting 100% of therapeutic efficacy when compared to infected and non-supplemented animals. Also, the treatment prevented the occurrence of clinical signs of disease, as erratic swimming, corneal opacity, skin lesions in the fin and tail, and loss of appetite. In summary, curcumin can be a promising dietary supplement for improving disease resistance.


Asunto(s)
Antibacterianos/administración & dosificación , Bagres , Curcumina/administración & dosificación , Suplementos Dietéticos , Enfermedades de los Peces/prevención & control , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/efectos de los fármacos , Animales , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/prevención & control , Resultado del Tratamiento
14.
Fish Physiol Biochem ; 44(2): 465-474, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29423894

RESUMEN

Dietary supplements are commonly used by animals and humans and play key roles in diverse systems, such as the immune and reproductive systems, and in metabolism. Essential oils (EOs), which are natural substances, have potential for use in food supplementation; however, their effects on organisms remain to be elucidated. Here, we examine the effects of dietary Aloysia triphylla EO supplementation on zebrafish behavior, metabolism, stress response, and growth performance. We show that fish fed diets containing A. triphylla EO presented an anxiolytic response, with reduced exploratory activity and oxygen consumption; no changes were observed in neuroendocrine stress axis functioning and growth was not impaired. Taken together, these results suggest that the A. triphylla EO supplementation is a strong candidate for use in feed, since it ensures fish welfare (anxiolytic behavior) with decreased oxygen consumption. This makes it suitable for use in high-density production systems without causing damage to the neuroendocrine stress axis and without growth performance being impaired.


Asunto(s)
Conducta Animal/efectos de los fármacos , Suplementos Dietéticos , Aceites de Plantas/administración & dosificación , Verbenaceae/química , Pez Cebra/fisiología , Animales , Consumo de Oxígeno/efectos de los fármacos , Extractos Vegetales/farmacología , Estrés Fisiológico/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo
15.
Fish Shellfish Immunol ; 62: 213-216, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28122262

RESUMEN

The essential oil of Aloysia triphylla (EOAT) is a promising product with potential use in aquaculture systems. This study evaluated hematological/biochemical responses and survival of silver catfish (Rhamdia quelen) fed a diet containing EOAT and infected by Aeromonas hydrophila. After 21 days of feeding trial, fish were infected with A. hydrophila following a 10-day period of observation. Blood collection was performed before and after the bacterial challenge. Dietary EOAT by itself seems to affect some blood parameters, decreasing total leukocyte, lymphocyte, and neutrophil counts and increasing total protein values. However, 2.0 mL EOAT/kg diet showed a possible potential protective effect after A. hydrophila infection, maintaining the evaluated parameters similar to basal values (from healthy fish before the feeding trial) and promoting survival of silver catfish.


Asunto(s)
Bagres , Dieta/veterinaria , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Aceites Volátiles , Verbenaceae/química , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Análisis Químico de la Sangre/veterinaria , Suplementos Dietéticos/análisis , Resistencia a la Enfermedad , Relación Dosis-Respuesta a Droga , Infecciones por Bacterias Gramnegativas/inmunología , Longevidad , Distribución Aleatoria
16.
Vet Anaesth Analg ; 44(1): 106-113, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27216232

RESUMEN

OBJECTIVES: To document the time for anesthesia induction and recovery using different concentrations of essential oils (EOs) of Cymbopogon flexuosus and Aloysia triphylla in silver catfish (Rhamdia quelen), and to determine whether the mechanism of action of either EO involves the benzodiazepine (BDZ) site of the GABAA receptor. STUDY DESIGN: Experimental study. ANIMALS: A total of 144 silver catfish, length 7.5 ± 1.1 cm, weighing 3.95 ± 0.85 g. METHODS: Essential oils were evaluated at concentrations of 25, 150 and 300 µL L-1, and also ethanol alone (seven groups, n = 6 per group). Induction of sedation or anesthesia and recovery were assessed. In a further six groups (n = 6 per group), fish were exposed to both EOs (25, 150 or 300 µL L-1) with diazepam 150 µm, and also diazepam (10 µm) alone. Flumazenil (5 or 10 µm) was added to the recovery water of fish exposed to diazepam (150 µm) or both EOs (150 and 300 µL L-1) (total of 10 groups = 60 fish). RESULTS: Both EOs induced anesthesia at concentrations of 150 and 300 µL L-1, and sedation at 25 µL L-1. There was no significant difference between EOs for reaching deep anesthesia; there was a significantly longer recovery time for the EO of C. flexuosus. The addition of diazepam (150 µm) resulted in faster induction of anesthesia with both EOs, with no significant change in recovery times. Flumazenil (10 µm) reversed the diazepam-induced anesthesia, but not the anesthesia induced by EOs. CONCLUSIONS AND CLINICAL RELEVANCE: The EO of C. flexuosus induced effective sedation (25 µL L-1) and anesthesia (150 and 300 µL L-1) without short-term mortality. The modulation of the BDZ site of the GABAA receptor in the anesthetic action mechanism of both EOs was not demonstrated.


Asunto(s)
Anestésicos/farmacología , Antioxidantes/farmacología , Bagres , Cymbopogon/química , Hipnóticos y Sedantes/farmacología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Receptores de GABA-A/efectos de los fármacos , Verbenaceae/química , Anestesia/veterinaria , Anestésicos/administración & dosificación , Animales , Hipnóticos y Sedantes/administración & dosificación , Aceites Volátiles/administración & dosificación
17.
Ciênc. rural ; 46(3): 560-566, mar. 2016. graf
Artículo en Inglés | LILACS | ID: lil-769683

RESUMEN

ABSTRACT: This research aimed to evaluate whether the essential oil of Aloysia triphylla (EOAT) used in vivo as a sedative in the water for transporting fish could increase the oxidative stability of silver catfish (Rhamdia quelen) fillets during frozen storage. The chemical composition of EOAT and of fillets from fish exposed to EOAT (0, 30 or 40µL L-1) were assessed. The pH and lipid oxidation parameters (conjugated dienes, CD; thiobarbituric acid-reactive-substances, TBARS) were evaluated in the fillets throughout the storage period (-18±2oC/17 months). The main compounds found in EOAT were α- and β-citral. Treatment with EOAT did not modify the proximate composition of the fillets, but 40µL L-1 EOAT reduced pH levels when compared to the control fillets (P<0.05). Compared to the control fillets, the fillets from fish treated with 30 and 40µL L-1 EOAT had higher initial CD values (P<0.05), whereas fillets from fish treated with 40µL L-1 EOAT had lower TBARS levels after 6, 9 and 17 months of storage (P<0.05). Results indicated that use of EOAT as a sedative in silver catfish transport water delays the degradation of primary oxidation products (CD) into secondary products (TBARS) in the frozen fillets. This delay in the lipid oxidation rate may increase the shelf life of frozen fillets.


RESUMO: O objetivo do trabalho foi avaliar se o uso do óleo essencial de Aloysia triphylla (OEAT) na água de transporte de peixes, in vivo como sedativo, poderia aumentar a estabilidade oxidativa de filés de jundiá (Rhamdia quelen) durante o armazenamento congelado. Avaliou-se a composição química do OEAT e dos filés dos peixes expostos ao OEAT (0, 30 ou 40µL L-1), bem como o pH e indicadores de oxidação lipídica (dienos conjugados, DC; substâncias reativas ao ácido tiobarbitúrico, TBARS) dos filés ao longo do armazenamento (-18±2oC/17 meses). O α- e o β-citral foram os compostos majoritários do OEAT. O tratamento com OEAT não modificou a composição centesimal dos filés de jundiá, mas 40µL L-1 de OEAT reduziu o pH dos filés, comparado ao controle (P<0,05). Foi observado maior teor inicial de DC nos filés dos tratamentos 30 e 40µL L-1 de OEAT e menor valor de TBARS nos filés do tratamento 40µL L-1 de OEAT após 6, 9 e 17 meses de congelamento, em comparação com os filés controle (P<0,05). Os resultados indicam que o uso do OEAT como sedativo na água de transporte de jundiás retarda a degradação de produtos primários da oxidação lipídica (DC) em produtos secundários (TBARS) nos filés congelados. Este retardo na velocidade de oxidação lipídica pode ampliar a vida útil dos filés congelados.

18.
Fish Physiol Biochem ; 42(1): 73-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26297516

RESUMEN

The effects of transporting silver catfish (Rhamdia quelen) for 6 h in plastic bags containing 0 (control), 30 or 40 µL/L of essential oil (EO) from Lippia alba leaves were investigated. Prior to transport, the fish in the two experimental groups were sedated with 200 µL/L of EO for 3 min. After transport, dissolved oxygen, carbon dioxide, alkalinity, water hardness, pH, temperature and un-ionized ammonia levels in the transport water did not differ significantly among the groups. However, total ammonia nitrogen levels and net Na(+), Cl(-) and K(+) effluxes were significantly lower in the groups transported with EO of L. alba than those in the control group. PvO2, PvCO2 and HCO3(-) were higher after transporting fish in 40 µL/L of EO of L. alba, but there were no significant differences between groups regarding blood pH or hematocrit. Cortisol levels were significantly higher in fish transported in 30 µL/L of EO of L. alba compared to those of the control group. The metabolic parameters (glycogen, lactate, total amino acid, total ammonia and total protein) showed different responses after adding EO to the transport water. In conclusion, while the EO of L. alba is recommended for fish transport in the conditions tested in the present study because it was effective in reducing waterborne total ammonia levels and net ion loss, the higher hepatic oxidative stress in this species with the same EO concentrations reported by a previous study led us to conclude that the 10-20 µL/L concentration range of EO and lack of pre-sedation before transport are more effective.


Asunto(s)
Bagres/metabolismo , Hipnóticos y Sedantes/farmacología , Lippia , Aceites Volátiles/farmacología , Aminoácidos/metabolismo , Amoníaco/análisis , Animales , Dióxido de Carbono/análisis , Proteínas de Peces/metabolismo , Glucógeno/metabolismo , Riñón/metabolismo , Ácido Láctico/metabolismo , Hígado/metabolismo , Músculos/metabolismo , Oxígeno/análisis , Hojas de la Planta , Transportes , Agua/análisis
19.
An Acad Bras Cienc ; 87(1): 95-100, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25789790

RESUMEN

In vitro and in vivo activity of the Lippia alba essential oil (EO) against Aeromonas sp. was evaluated. In the in vitro assay the minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of EO for Aeromonas cells were determined using the microdilution method. Twenty five strains of Aeromonas sp. isolated from infected fish obtained from local fish farms were used. MIC and MBC values were 2862 and 5998 µg mL-1 for L. alba EO and 0.5 and 1.2 µg mL-1 for gentamicin, respectively. In the in vivo assay silver catfish juveniles (Rhamdia quelen) (7.50 ± 1.85 g and 10.0 ± 1.0 cm) with typical injuries associated to Aeromonas infection were divided into four treatments (in triplicate n=10): untreated fish (negative control), 10 mg L-1 of gentamicin, and 20 or 50 µL L-1 of EO. Fish were maintained in aerated 20 L plastic boxes. After 10 days survival of silver catfish infected with Aermonas sp. and treated with essential oil (50 µL L-1) was greater than 90%.


Asunto(s)
Aeromonas/efectos de los fármacos , Bagres/microbiología , Enfermedades de los Peces/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/veterinaria , Lippia/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/uso terapéutico , Aceites de Plantas/uso terapéutico , Factores de Tiempo
20.
J Food Sci ; 79(6): S1205-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24761832

RESUMEN

UNLABELLED: Exposure of silver catfish to 40 µL/L of the essential oil of Aloysia triphylla (AT) during in vivo transport delayed the onset and resolution of rigor mortis as well as the degradation of IMP into HxR compared to the control. The fish that were treated with 30 or 40 µL/L of AT received lower sensory demerit scores after 10 d of storage in ice compared to the control, and the fish that were treated with 40 µL/L of AT had a longer sensory shelf life than did the control. These results indicated that using AT as a sedative in the water in which the silver catfish were transported extended their freshness and increased their shelf life during refrigerated storage. PRACTICAL APPLICATION: Interest in natural anesthetics, such as Aloysia triphylla, has increased in the field of commercial aquaculture because they reduce the number of fish lesions acquired during capture, handling, and transportation. Fish sedated with the essential oil of A. triphylla at 40 µL/L during transport before slaughter exhibited a delay in the loss of freshness and an increased shelf life in ice. In addition to improving animal welfare before slaughter, the essential oil appears to be a promising product for improving fish conservation in the food industry.


Asunto(s)
Anestésicos/farmacología , Acuicultura/métodos , Bagres , Hipnóticos y Sedantes/farmacología , Aceites Volátiles/farmacología , Alimentos Marinos/análisis , Verbenaceae/química , Bienestar del Animal , Animales , Conservación de Alimentos , Almacenamiento de Alimentos , Humanos , Hielo , Rigor Mortis , Alimentos Marinos/normas , Transportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...