Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Indian J Microbiol ; 64(1): 125-132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468728

RESUMEN

The emergence of multidrug resistance in bacterial infections has limited the use of antibiotics. Helping the action of antibiotics is one of the needs of the day. Today, the biosynthesis of nanoparticles (NPs) is considered due to its safety and cost-effectiveness. In this study, we investigated the effect of biosynthesized silver nanoparticles (AgNPs) by Berberine plant extract against standard strains of multidrug-resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa. Utilized UV-Vis, FTIR, FESEM/EDX, XRD, DLS, and Zeta potential techniques to confirm the biosynthesis of NPs. Then, disk diffusion agar (DDA) and minimum inhibitory concentration (MIC) tests were performed using common classes of standard antibiotics and AgNPs on the mentioned bacteria. The synergistic action between AgNPs and antibiotics was evaluated by the checkerboard method. First, we obtained the confirmation results of the biosynthesis of AgNPs. According to the DDA test, both standard bacterial strains were sensitive to NPs and had an inhibition zone. Also, the MIC values showed that AgNPs inhibit the growth of bacteria at lower concentrations than antibiotics. On the other hand, the results obtained from checkerboard monitoring showed that AgNPs, in combination with conventional antibiotics, have a synergistic effect. The advantage of this study was comparing the antibacterial effect of AgNPs alone and mixed with antibiotics. The antibacterial sensitivity tests indicated that the desired bacterial strains could not grow even in low concentrations of AgNPs. This property can be applied in future programs to solve the drug resistance of microorganisms in bacterial diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01136-y.

2.
J Basic Microbiol ; 63(2): 210-222, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36482013

RESUMEN

The problems of drug resistance in bacteria have become one of the daily challenges of the clinical treatment of patients, which inevitably forces us to use agents other than common antibiotics. Among these, we can take help from different properties and applications of nanoparticles (NPs). In this work, we evaluate the antibacterial activity of biosynthesized selenium nanoparticles (SeNPs) against standard strains of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. The production of biosynthesized SeNPs was proved by ultraviolet-visible, Fourier transform infrared, X-ray diffractometer, Field Emission Scanning Electron Microscopy, Dynamic light scattering, and Zeta potential methods. The cytotoxicity effect of SeNPs was investigated by MTT assay. Disk diffusion agar (DDA) and minimum inhibitory concentration (MIC) tests were performed on the mentioned bacteria using different classes of standard antibiotics and SeNPs separately. The impact of SeNPs combined with the desired antibiotics for better treatment of these infections was evaluated by checkerboard assay to determine the synergism effect. After the confirmation results based on the biosynthesis of SeNPs, both standard bacterial strains were susceptible to SeNPs and had a zone of inhibition using the DDA test. Also, the results of MICs showed that biosynthesized SeNPs in lower concentrations than antibiotics cause no growth of bacteria. On the other hand, according to the checkerboard assay, SeNPs had a synergistic effect with conventional antibiotics. The antibacterial sensitivity tests demonstrated the inhibition of bacterial growth in the presence of lower concentrations of SeNPs than common antibiotics. This property can be exerted in future applications to solve the drug resistance obstacle of microorganisms in bacterial diseases.


Asunto(s)
Acinetobacter baumannii , Nanopartículas , Nepeta , Selenio , Humanos , Selenio/farmacología , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Pruebas de Sensibilidad Microbiana
3.
Biosci. j. (Online) ; 39: e39058, 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1561042

RESUMEN

In this project, we employed ethanolic (EMI) and aqueous (AMI) extracts of mango (Mangifera indica L., Anacardiaceae) fruit seeds as a modulator of antibiotic resistance against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter baumannii to evaluate natural compounds isolated from by-products or waste of edible plants. We also investigated the effect of these extracts alone and in combination with standard classes of antibiotics in the desired strains. M. indica seeds were processed and exploited using ethanol and water. The minimum inhibitory concentrations (MICs) of clinical isolates were examined against EMI and AMI extracts, followed by seven antibiotics of ceftazidime, ciprofloxacin, penicillin, amikacin, meropenem, ampicillin, and colistin. The checkerboard method evaluated the synergistic action between mango kernel extract (EMI) and seven antibiotics. EMI extract significantly revealed antimicrobial properties against MDR A. baumannii and P. aeruginosa with synergistic effects with the applied antibiotics. The considerable antibacterial efficacy of ethanolic extract of M. indica seeds can have great curative value as antibacterial drugs against infections caused by MDR P.aeruginosa and A. baumannii.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA