Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 100(13): 137001, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18517987

RESUMEN

Using the local density approximation and a realistic phonon spectrum we determine the momentum and frequency dependence of alpha(2)F(k,omega) in YBa(2)Cu(3)O(7) for the bonding, antibonding, and chain band. The resulting self-energy Sigma is rather small near the Fermi surface. For instance, for the antibonding band the maximum of ReSigma as a function of frequency is about 7 meV at the nodal point in the normal state and the ratio of bare and renormalized Fermi velocities is 1.18. These values are a factor of 3-5 too small compared to the experiment showing that only a small part of Sigma can be attributed to phonons. Furthermore, the frequency dependence of the renormalization factor Z(k,omega) is smooth and has no anomalies at the observed kink frequencies which means that phonons cannot produce well-pronounced kinks in stoichiometric YBa(2)Cu()3)O(7), at least, within the local density approximation.

2.
Phys Rev Lett ; 96(8): 086402, 2006 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16606203

RESUMEN

Self-localization of holes in the Holstein t-J model is studied in the adiabatic limit using exact diagonalization and the retraceable path approximation. It is shown that the critical electron-phonon coupling lambda c decreases with increasing J and that this behavior is determined mainly by the incoherent rather than by the coherent motion of the hole. The obtained spin correlation functions in the localized region can be understood within a percolation picture where antiferromagnetic order can persist up to a substantial hole doping. These results restrict the possibility of self-localization of holes in lightly doped cuprates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...