Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 96(4): e29595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587217

RESUMEN

Systemic autoimmune diseases (SADs) are a growing spectrum of autoimmune disorders that commonly affect multiple organs. The role of Epstein-Barr virus (EBV) infection or reactivation as a trigger for the initiation and progression of SADs has been established, while the relationship between EBV envelope glycoproteins and SADs remains unclear. Here, we assessed the levels of IgG, IgA, and IgM against EBV glycoproteins (including gp350, gp42, gHgL, and gB) in serum samples obtained from patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), and found that RA and SLE patients exhibited a statistically significant increase in the levels of 8 and 11 glycoprotein antibodies, respectively, compared to healthy controls (p < 0.05). The LASSO model identified four factors as significant diagnostic markers for RA: gp350 IgG, gp350 IgA, gHgL IgM, and gp42 IgA; whereas for SLE it included gp350 IgG, gp350 IgA, gHgL IgA, and gp42 IgM. Combining these selected biomarkers yielded an area under the curve (AUC) of 0.749 for RA and 0.843 for SLE. We subsequently quantified the levels of autoantibodies associated with SADs in mouse sera following immunization with gp350. Remarkably, none of the tested autoantibody levels exhibited statistically significant alterations. Elevation of glycoprotein antibody concentration suggests that Epstein-Barr virus reactivation and replication occurred in SADs patients, potentially serving as a promising biomarker for diagnosing SADs. Moreover, the absence of cross-reactivity between gp350 antibodies and SADs-associated autoantigens indicates the safety profile of a vaccine based on gp350 antigen.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Infecciones por Virus de Epstein-Barr , Lupus Eritematoso Sistémico , Humanos , Animales , Ratones , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Anticuerpos Antivirales , Artritis Reumatoide/complicaciones , Glicoproteínas , Enfermedades Autoinmunes/complicaciones , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina M
2.
Mol Biol Rep ; 41(4): 1917-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24619356

RESUMEN

Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.


Asunto(s)
Citocinas/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Largo no Codificante , Análisis de Secuencia de ARN
3.
Virol J ; 9: 312, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23249700

RESUMEN

BACKGROUND: Recent studies have revealed that Mitochondrial Antiviral Signaling (MAVS) protein plays an essential role in the inhibition of viral infection through type I interferon (IFN) pathway. It has been shown that 3C (pro) cysteine protease of coxsackievirus B3 (CVB3) cleaves MAVS to inhibit type I IFNs induction. Other workers also found that MAVS knock-out mice suffered CVB3 susceptibility and severe histopathological change. Accordingly,our experiments were designed to explore the protection of over-expressing MAVS against CVB3 infection and the possible mechanism. RESULTS: In this study, HeLa cells (transfected with MAVS constructs pre- or post- exposure to CVB3) were used to analyze the function of exogenous MAVS on CVB3 infection. The results revealed that though CVB3 infection induced production of type I IFNs, viral replication and cell death were not effectively inhibited. Similarly, exogenous MAVS increased type I IFNs moderately. Morever, we observed robust production of type I IFNs in CVB3 post-infected HeLa cells thereby successfully inhibiting CVB3 infection, as well formation of cytopathic effect (CPE) and cell death. Finally, introduction of exogenous MAVS into CVB3 pre-infected cells also restricted viral infection efficiently by greatly up-regulating IFNs. CONCLUSIONS: In summary, exogenous MAVS effectively prevents and controls CVB3 infection by modulating and promoting the production of type I IFNs. The IFNs level in MAVS over-expressing cells is still tightly regulated by CVB3 infection. Thus, the factors that up-regulate MAVS might be an alternative prescription in CVB3-related syndromes by enhancing IFNs production.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/metabolismo , Enterovirus Humano B/fisiología , Interferón Tipo I/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/farmacología , Proliferación Celular/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Enterovirus Humano B/efectos de los fármacos , Expresión Génica , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...