Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article En | MEDLINE | ID: mdl-38003358

The imbalance that occurs in bone remodeling induced by irradiation (IR) is the disruption of the balance between bone formation and bone resorption. In this study, primary osteocytes (OCYs) of femoral and tibial origin were cultured and irradiated. It was observed that irradiated OCY showed extensive DNA damage, which led to the initiation of a typical phenotype of cellular senescence, including the secretion of senescence-associated secretory phenotype (SASP), especially the C-C motif chemokine ligand 5 (CCL5). In order to explore the regulation of osteoclastogenic potential by IR-induced senescent OCYs exocytosis factor CCL5, the conditioned medium (CM) of OCYs was co-cultured with RAW264.7 precursor cells. It was observed that in the irradiated OCY co-cultured group, the migration potential increased compared with the vehicle culture group, accompanied by an enhancement of typical mature OCs; the expression of the specific function of enzyme tartrate-resistant acid phosphatase (TRAP) increased; and the bone-destructive function was enhanced. However, a neutralizing antibody to CCL5 could reverse the extra-activation of osteoclastogenesis. Accordingly, the overexpression of p-STAT3 in irradiated OCY was accompanied by CCL5. It was concluded that CCL5 is a potential key molecule and the interventions targeting CCL5 could be a potential strategy for inhibiting osteoclastogenesis and restoring bone remodeling.


Bone Resorption , Osteogenesis , Humans , Bone Remodeling , Bone Resorption/metabolism , Cellular Senescence/genetics , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Ligands , Osteoclasts/metabolism , Osteogenesis/genetics , RANK Ligand/metabolism , Animals , Mice
2.
Medicina (Kaunas) ; 59(7)2023 Jul 16.
Article En | MEDLINE | ID: mdl-37512126

Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis.


Bone and Bones , Signal Transduction , Animals , Mice , Bone and Bones/metabolism , Cytokines , NF-kappa B/metabolism , Osteogenesis , Signal Transduction/physiology , Mice, Inbred BALB C
3.
Med Oncol ; 40(2): 72, 2023 Jan 06.
Article En | MEDLINE | ID: mdl-36607460

The present study aimed to investigate the efficacy of Iodine-125 (I-125) brachytherapy in a mouse model of non-small cell lung cancer, to further explore the efficacy and appropriate method of implantation of the I-125 radioactive seed. This study also aimed to determine the impact of brachytherapy on bone metabolism. A total of 18 mice were used to establish H1299 xenograft models, and were randomly assigned to three groups. These included non-radioactive seed implantation (Sham IM), fractionated I-125 seed implantation (Fractionated IM) and single I-125 seed implantation (Single IM) groups. Mice were euthanized after 28 days of implantation. H&E staining, Ki67 immunohistochemistry, CD31 morphometric analysis and TUNEL immunofluorescence assays were respectively used to determine the histopathological changes, proliferation, micro-angiogenesis and apoptosis of tumors. In addition, bone volume and microstructure were evaluated using trabecular bone area (Tb.Ar), trabecular thickness (Tb.Th), trabecular number (Tb.N) and cortical thickness. Bone metabolic status was analyzed using histomorphometric staining of tartrate-resistant acid phosphate (TRAP) and alkaline phosphatase (ALP) expression in the femur, and using an ELISA assay to determine the expression of C-telopeptide of type 1 collagen (CTX-1) and procollagen type 1 n-terminal propeptide (P1NP) in the serum. Moreover, reverse transcription-quantitative PCR and western blotting were carried out for the analysis of bone remodeling-related gene expression in the bone tissue. Results of the present study demonstrated that compared with the Sham IM group, both the I-125 seed implantation groups, including Fractionated IM and Single IM, demonstrated significant therapeutic effects in both tumor volume and weight. More specifically, the most significant therapeutic effects on tumor inhibition were observed in the Fractionated IM group. Results of Ki67 and CD31 immunohistochemical staining suggested a notable reduction in tumor cell proliferation and micro-angiogenesis, and results of the TUNEL assay demonstrated an increase in tumor cell apoptosis. Although the cortical bone appeared thinner and more fragile in both I-125 seed implantation groups, no notable adverse changes in the morphology of the cancellous bone were observed, and the index of Tb.Ar, Tb.Th and Tb.n was not significantly different among Sham IM and I-125 implantation groups. However, alterations in bone metabolism were characterized by a decrease in CTX-1 and P1NP expression, accompanied by an increase in TRAP activity and a decrease in ALP activity. Results of the present study also demonstrated the notable suppression of osteocalcin and runt-related transcription factor 2. I-125 seed implantation may be an effective and safe antitumor strategy. Moreover, the use of fractionated implantation patterns based on tumor shape exhibited improved therapeutic effect on tumor suppression when the total number of I-125 seeds was equivalent along with reduced complications associated with bone loss.


Brachytherapy , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Disease Models, Animal , Heterografts , Iodine Radioisotopes , Ki-67 Antigen , Lung Neoplasms/radiotherapy
4.
Int J Radiat Biol ; 97(11): 1578-1588, 2021.
Article En | MEDLINE | ID: mdl-34491151

PURPOSE: This study aimed to investigate the therapeutic potential of tumor suppression and mechanism for different implantation modes of iodine-125 (I-125) seeds irradiation in a mice xenograft model, and its skeletal complications. MATERIALS AND METHODS: A total of 24 mice carrying A549 lung tumor-derived xenografts were randomly assigned to four groups, including non-radioactive (sham) seeds implantation, I-125 seeds fractional implantation, I-125 seeds single implantation and I-125 seeds single implantation combined with anlotinib. Ki67 immunohistochemistry, TUNEL immunofluorescence and CD31 morphometric analysis were used to determine the proliferation index, rate of apoptotic cells and microvessel density, respectively. Additionally, the side effects on the skeletal system in mice treated with I-125 seeds implantation were evaluated by histomorphometric staining with tartrate-resistant acid phosphate (TRAP) and alkaline phosphatase (ALP) expression in femur, tartrate-resistant acid phosphatase 5b (TRACP-5b) and procollagen type I N-terminal propeptide (PINP) levels in serum were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS: The I-125 seeds single and fractionated implantation had similar therapeutic effects and complications when the total number of I-125 seeds was the same. A single implantation of I-125 seeds with or without anlotinib could analogously inhibit the tumor growth in xenografts mice, while the single implantation combined with anlotinib had more effective in tumor inhibition. The results of Ki67, TUNEL and CD31 staining confirmed an evident reduction in tumor cell proliferation and angiogenesis, as well as an increase in apoptosis. A relatively integrated bone metabolism was indicated after I-125 seeds single implantation with or without anlotinib, and the results were similar in I-125 seeds fractional implantation, including a reduction in the number of TRAP-positive cells and an increase in ALP expression level. Additionally, the serum TRACP-5b activity was decreased and the serum PINP concentration was increased following I-125 seeds implantation. CONCLUSIONS: Single and fractionated implantation pattern of I-125 radioactive seeds had similar therapeutic efficacy against tumor growth, while brachytherapy with I-125 seeds implantation may be an effective and safe treatment strategy for its potential protection against cancer treatment-induced bone loss.


Neoplasms , A549 Cells , Animals , Collagen Type I , Humans , Indoles , Iodine Radioisotopes , Ki-67 Antigen , Mice , Neoplasms/therapy , Quinolines , Tartrate-Resistant Acid Phosphatase
5.
Int J Mol Sci ; 22(17)2021 Aug 28.
Article En | MEDLINE | ID: mdl-34502232

Cellular senescence and its senescence-associated secretory phenotype (SASP) are widely regarded as promising therapeutic targets for aging-related diseases, such as osteoporosis. However, the expression pattern of cellular senescence and multiple SASP secretion remains unclear, thus leaving a large gap in the knowledge for a desirable intervention targeting cellular senescence. Therefore, there is a critical need to understand the molecular mechanism of SASP secretion in the bone microenvironment that can ameliorate aging-related degenerative pathologies including osteoporosis. In this study, osteocyte-like cells (MLO-Y4) were induced to cellular senescence by 2 Gy γ-rays; then, senescence phenotype changes and adverse effects of SASP on bone marrow mesenchymal stem cell (BMSC) differentiation potential were investigated. The results revealed that 2 Gy irradiation could hinder cell viability, shorten cell dendrites, and induce cellular senescence, as evidenced by the higher expression of senescence markers p16 and p21 and the elevated formation of senescence-associated heterochromatin foci (SAHF), which was accompanied by the enhanced secretion of SASP markers such as IL-1α, IL-6, MMP-3, IGFBP-6, resistin, and adiponectin. When 0.8 µM JAK1 inhibitors were added to block SASP secretion, the higher expression of SASP was blunted, but the inhibition in osteogenic and adipogenic differentiation potential of BMSCs co-cultured with irradiated MLO-Y4 cell conditioned medium (CM- 2 Gy) was alleviated. These results suggest that senescent osteocytes can perturb BMSCs' differential potential via the paracrine signaling of SASP, which was also demonstrated by in vivo experiments. In conclusion, we identified the SASP factor partially responsible for the degenerative differentiation of BMSCs, which allowed us to hypothesize that senescent osteocytes and their SASPs may contribute to radiation-induced bone loss.


Bone Resorption/pathology , Cell Differentiation , Cellular Senescence , Gamma Rays/adverse effects , Mesenchymal Stem Cells/pathology , Osteocytes/pathology , Paracrine Communication , Animals , Bone Resorption/etiology , Bone Resorption/metabolism , Male , Mesenchymal Stem Cells/radiation effects , Mice , Mice, Inbred BALB C , Osteocytes/radiation effects , Osteogenesis
6.
Int J Mol Med ; 47(5)2021 05.
Article En | MEDLINE | ID: mdl-33693957

Irradiation­induced bone remodeling imbalances arise as a consequence of the dysregulation of bone formation and resorption. Due to the abundance of osteocytes, their long life and their dual­regulatory effects on both osteoblast and osteoclast function, they serve as critical coordinators of bone remolding. In the present study, femur and tibia­derived primary osteocytes were cultured and irradiated to observe the functional changes and the cellular senescence phenotype in vitro. Irradiation directly reduced cell viability, affected the crucial dendritic morphology and altered the expression of functional proteins, including upregulation of receptor activator of nuclear factor­κB ligand and sclerostin, and downregulation of osteoprotegerin. Irradiated osteocytes were shown to exhibit notable DNA damage, which resulted in the initiation of a typical cellular senescence phenotype. Furthermore, it was found that irradiation­induced prematurely senescent osteocytes stimulate molecular secretion, referred to as senescence­associated secretory phenotype (SASP), which may be involved in modulation of the bone microenvironment, including the promotion of osteoclastogenesis. Taken together, the results showed that irradiation triggered osteocyte senescence and the acquisition of an associated secretory phenotype. This further resulted in an imbalance of bone remodeling through senescent influence on proliferation, morphology and marker protein production, but also indirectly via a paracrine pathway through SASP secretion. The results of the present study may highlight the potential of SASP­targeted interventions for the management of radiation­induced bone loss.


Cell Differentiation/radiation effects , Cellular Senescence/radiation effects , Gamma Rays , Osteocytes/metabolism , Animals , Male , Mice , Mice, Inbred BALB C
7.
Int J Radiat Biol ; 96(10): 1296-1308, 2020 10.
Article En | MEDLINE | ID: mdl-32687425

PURPOSE: The aim of the present study was to investigate the duality of irradiation effect on osteoclastogenesis, particularly on the cytoskeleton and expression of lytic enzymes in osteoclast precursors. Therefore, the present study may serve as a useful reference for the prevention and treatment of radiation-induced bone loss in the clinic. MATERIALS AND METHODS: Two typical osteoclast precursors, murine RAW 264.7 macrophage cells and mouse bone marrow-derived macrophages (BMMs), were exposed to radiation in the order of 0.25-8 Gy, and the effects on cell viability, TRAP activity and bone resorption were subsequently investigated. Furthermore, changes in the cytoskeleton, cell apoptosis, and expression of lytic enzymes in osteoclasts were examined to elucidate the molecular mechanism of the duality of irradiation on osteoclastogenesis. RESULTS: Morphological changes and impaired viability were observed in RAW 264.7 cells and BMMs treated with 1-8 Gy irradiation with or without RANKL. However, the cell fusion tendency of osteoclasts was enhanced after 2 Gy irradiation, and an increased number of fused giant osteoclasts and enhanced F-actin ring formation were observed. Consistently, the bone resorption activity and the enzyme expression of TRAP, cathepsin K, matrix metalloproteinase 9, activator protein 1, and Caspase 9 were increased following irradiation with 2 Gy. Furthermore, intracellular ROS production and apoptosis of osteoclast precursors were increased. CONCLUSIONS: Irradiation with 2 Gy inhibited the viability of osteoclast precursors, but increased osteoclastogenesis by enhancing cell fusion and increasing the secretion of lytic enzymes, which may be an important mechanism of radiation-induced bone loss.


Bone Marrow Cells/cytology , Cytoskeleton/radiation effects , Macrophages/radiation effects , Osteoclasts/cytology , Osteoclasts/radiation effects , Animals , Apoptosis/radiation effects , Bone Resorption/pathology , Cell Survival/radiation effects , Cytoskeleton/metabolism , Macrophages/cytology , Mice , Osteoclasts/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
8.
Am J Physiol Cell Physiol ; 318(5): C1005-C1017, 2020 05 01.
Article En | MEDLINE | ID: mdl-32233952

The role of cellular senescence induced by radiation in bone loss has attracted much attention. As one of the common complications of anticancer radiotherapy, irradiation-induced bone deterioration is common and clinically significant, but the pathological mechanism has not been elucidated. This study was performed to explore the cellular senescence and senescence-associated secretory phenotype (SASP) induction of bone marrow-derived mesenchymal stem cells (BMSCs) by irradiation and its role in osteogenic differentiation dysfunction. It was observed that irradiated BMSCs lost typical fibroblast-like morphology, exhibited suppressed viability and differentiation potential accompanied with senescence phenotypes, including an increase in senescence-associated ß-galactosidase (SA-ß-gal) staining-positive cells, and upregulated senescence-related genes p53/p21, whereas no changes happened to p16. Additionally, DNA damage γ-H2AX foci, G0/G1 phase of cell cycle arrest, and cellular and mitochondrial reactive oxygen species (ROS) increased in an irradiation dose-dependent manner. Meanwhile, the JAK1/STAT3 pathway was activated and accompanied by an increase in SASP secretion, such as IL-6, IL-8, and matrix metalloproteinase-9 (MMP9), whereas 0.8 µM JAK1 inhibitor (JAKi) treatment effectively inhibited the JAK pathway and SASP production. Furthermore, conditioned medium (CM) from irradiation-induced senescent (IRIS) BMSCs exhibited a markedly reduced ability in osteogenic differentiation and marker gene expression of osteoblasts, whereas CM with JAKi intervention may effectively improve these deterioration effects. In conclusion, irradiation could provoke BMSC senescence and SASP secretion and further aggravate osteogenic differentiation dysfunction via paracrine signaling, whereas SASP targeting may be a possible intervention strategy for alleviating irradiation-induced bone loss.


Cell Differentiation/genetics , Cellular Senescence/genetics , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Bone Resorption/genetics , Bone Resorption/therapy , Cell Cycle Checkpoints/genetics , Cell Proliferation/genetics , Cellular Senescence/radiation effects , DNA Damage/radiation effects , Gene Expression Regulation, Developmental/radiation effects , Histones/genetics , Humans , Janus Kinase 1/genetics , Mesenchymal Stem Cells/radiation effects , Mitochondria/genetics , Mitochondria/radiation effects , Paracrine Communication/genetics , Radiation , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/radiation effects
9.
Int J Mol Med ; 44(6): 2265-2275, 2019 Dec.
Article En | MEDLINE | ID: mdl-31638191

Radiotherapy, one of the clinical treatments of cancer, is accompanied by a high risk of damage to healthy tissues, such as bone loss and increased risk of fractures. The aim of the present study was to establish a rat model of local and systemic bone injury by focal irradiation, in order to study the etiological mechanism and intervention. The proximal metaphyseal region of the left hindlimb of male Sprague­Dawley rats were exposed to a single 2 Gy or three 8 Gy doses delivered on days 1, 3 and 5 using a small animal irradiator, the changes in bone volume and microarchitecture were evaluated, and the mineral apposition rate (MAR) was assessed. Furthermore, bone marrow­derived macrophages (BMMs) were isolated and induced to osteoclasts. It has been demonstrated that a single dose of 2 Gy may result in a significant loss of lumbar bone density at 3 days post­irradiation, however this is restored at 30 days post­irradiation. In the 3x8 Gy irradiation rat model, there was a rapid decrease in the aBMD of lumbar spine at 3 days and at 7 days post­irradiation, and the aBMD decline persisted even at 60 days post­irradiation. In addition, microCT analysis revealed a persistent decline in bone volume and damage in microarchitecture in the 3x8 Gy irradiation model, accompanied by a decrease in MAR, index of the decline in bone­forming ability. In the cellular mechanism, a single 2 Gy local irradiation mainly manifested as an enhancement of the BMMs osteoclastogenesis potential, which was different from the osteoclastogenesis inhibition after high­dose focal irradiation (3x8 Gy). In summary, the irradiation with simulated clinical focal fractionated radiotherapy exerts short­ and long­term systemic injury on bone tissue, characterized by different osteoclastogenesis potential between the high dose mode and a single 2 Gy focal irradiation. Physicians must consider the irreversibility of bone damage in clinical radiotherapy.


Bone Density/radiation effects , Bone Resorption/genetics , Bone and Bones/metabolism , Osteoclasts/radiation effects , Animals , Bone Density/genetics , Bone Resorption/pathology , Bone and Bones/injuries , Bone and Bones/radiation effects , Dose-Response Relationship, Radiation , Humans , Radiation Exposure , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
10.
J Cell Physiol ; 234(10): 17314-17325, 2019 08.
Article En | MEDLINE | ID: mdl-30786022

Irradiation-induced bone loss is widely reported, especially in radiotherapy-induced osteoporosis. In addition to the mechanism of osteogenesis inhibition and osteoclastogenesis promotion, the regulation effect of osteocytes, which also send signals to modulate osteoclastogenesis, should be elucidated. In this study, the effect of irradiation on osteocyte and its accommodation to osteoclastogenesis via the release of high mobility group box 1 (HMGB1) was explored. Furthermore, the control response of HMGB1 inhibitor on receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) expression in osteocyte and osteocyte-induced osteoclastogenesis was assessed. It was observed that irradiated osteocyte-like MLO-Y4 cells exhibited polygonal-shaped morphological changes and shortened dendrites, inhibited cell viability and induced cellular apoptosis, along with the reduction in dendritic E11 protein/messenger RNA expression at a doses of 4 Gy. Additionally, the secretion of HMGB1 in supernatants was promoted, accompanied by the decreased OPG and elevated RANKL expression. When the RAW264.7 cells were cocultured with irradiated MLO-Y4 cells or its conditioned medium, enhanced migration and differentiation of osteoclast precursor was observed, and this difference was alleviated with anti-HMGB1 neutralizing antibody. In conclusion, this study demonstrated that irradiation deteriorated osteocytes' potential to promote recruitment and differentiation of osteoclast precursor via stimulating HMGB1 release and subsequent elevation of RANKL/OPG level. This study will assist in designing the intervention programs for irradiation-induced bone loss.


HMGB1 Protein/metabolism , Osteoclasts/metabolism , Osteocytes/drug effects , Osteogenesis/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Coculture Techniques/methods , Culture Media, Conditioned/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Osteoclasts/drug effects , Osteocytes/metabolism , RANK Ligand/metabolism
11.
J Cell Physiol ; 233(4): 3429-3438, 2018 04.
Article En | MEDLINE | ID: mdl-28941279

Ionizing radiation-induced bone loss is a potential health concern in radiotherapy, occupational exposure, and astronauts. Although impaired bone vasculature and reduced proliferation of bone-forming osteoblasts has been implicated in this process, it has not been clearly characterized that whether radiation affects the growth of bone-resorbing osteoclasts. The molecular crosstalk between different cell populations in the skeletal system has not yet been elucidated in detail, especially between the increased bone resorption at early stage of post-irradiation and bone marrow-derived endothelial progenitor cells (BM-EPCs). In order to further understand the mechanisms involved in radiation-induced bone loss at the cellular level, we assessed the effects of irradiation on angiogenesis of BM-EPCs and osteoclastogenesis of receptor activator for nuclear factor-κB ligand (RANKL)-stimulated RAW 264.7 cells and crosstalk between these cell populations. We herein found significantly dysfunction of BM-EPCs in response to irradiation at a dose of 2 Gy, including inhibited proliferation, migration, tube-forming abilities, and downregulated expression of pro-angiogenesis vascular endothelial growth factors A (VEGF A). Meanwhile, we observed that irradiation promoted osteoclastogenesis of RANKL-stimulated RAW 264.7 cells directly or indirectly. These results provide quantitative evidences of irradiation induced osteoclastogenesis at a cellular level, and strongly suggest the involvement of osteoclastogenesis, angiogenesis and crosstalk between bone marrow cells in the radiation-induced bone loss. This study may provide new insights for the early diagnosis and intervention of bone loss post-irradiation.


Bone Marrow Cells/radiation effects , Osteoblasts/radiation effects , Osteoclasts/radiation effects , Osteogenesis/physiology , Angiogenesis Inducing Agents/pharmacology , Animals , Bone Marrow Cells/metabolism , Bone Resorption/metabolism , Cell Differentiation/physiology , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Male , Osteoblasts/metabolism , Osteoclasts/metabolism , RANK Ligand/metabolism , Rats, Sprague-Dawley
12.
Mol Med Rep ; 15(6): 3706-3714, 2017 Jun.
Article En | MEDLINE | ID: mdl-28440500

Cancer survivors after radiotherapy may suffer a variety of bone­related adverse side effects, including radioactive osteoporosis and fractures. Localized irradiation is a common treatment modality for malignancies. Recently, a series of reactions and injuries called indirect effects (remote changes in bone when other parts of the body are irradiated) have been reported on the indirect irradiated area of bone tissue after radiotherapy. To address this issue, we developed a rat localized irradiation model. Rats were irradiated with a single dose of X-rays to the left hind limbs, and bone marrow mesenchymal stem cells (BMMSCs) were isolated from bone marrow of the left (direct irradiated) and right (indirect irradiated) hind limbs 3, 7 and 14 days after irradiation, and assayed for the proliferation ability and osteogenic potential by alkaline phosphatase (ALP) activity, mineralization assay, RT­PCR and western blot analysis. The results showed that there were significant morphology changes in the BMMSCs from direct and indirect irradiated bone tissue with bigger cell bodies and increased granules. The proliferation of BMMSCs decreased both in the direct irradiated and non­irradiated bone tissue. The ALP expression and activities of BMMSCs from direct irradiated bone was consistently defected following a transient enhancement, the mRNA levels of RUNX2 and OCN, the protein expression of RUNX2, and the mineralization ability also showed the same trend. Simultaneously, in indirect irradiated group, the osteogenic potential indicators of BMMSCs decreased in the early stage of post­irradiation and were still impaired 14 days after irradiation. Our data demonstrate that localized irradiation may have both direct and indirect adverse effects on BMMSCs' proliferation and osteogenic potential into osteoblast, which may be the mechanism of radiation-induced abscopal impairment to the skeleton in the cancer radiotherapy-induced bone loss.


Cell Differentiation/radiation effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/radiation effects , Osteogenesis/radiation effects , X-Rays , Animals , Biomarkers , Calcification, Physiologic/genetics , Calcification, Physiologic/radiation effects , Cell Proliferation/radiation effects , Cells, Cultured , Gene Expression Regulation , Male , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Rats
...