Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943576

RESUMEN

Manipulating single electrons at the atomic scale is vital for mastering complex surface processes governed by the transfer of individual electrons. Polarons, composed of electrons stabilized by electron-phonon coupling, offer a pivotal medium for such manipulation. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT) calculations, we report the identification and manipulation of a new type of polaron, dubbed van der Waals (vdW) polaron, within mono- to trilayer ultrathin films composed of Sb2O3 molecules that are bonded via vdW attractions. The Sb2O3 films were grown on a graphene-covered SiC(0001) substrate via molecular beam epitaxy. Unlike prior molecular polarons, STM imaging observed polarons at the interstitial sites of the molecular film, presenting unique electronic states and localized band bending. DFT calculations revealed the lowest conduction band as an intermolecular bonding state, capable of ensnaring an extra electron through locally diminished intermolecular distances, thereby forming an intermolecular vdW polaron. We also demonstrated the ability to generate, move, and erase such vdW polarons using an STM tip. Our work uncovers a new type of polaron stabilized by coupling with intermolecular vibrations where vdW interactions dominate, paving the way for designing atomic-scale electron transfer processes and enabling precise tailoring of electron-related properties and functionalities.

2.
Nano Lett ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888216

RESUMEN

The basal plane of transition metal dichalcogenides (TMDCs) is inert for the hydrogen evolution reaction (HER) due to its low-efficiency charge transfer kinetics. We propose a strategy of filling the van der Waals (vdW) layer with delocalized electrons to enable vertical penetration of electrons from the collector to the adsorption intermediate vertically. Guided by density functional theory, we achieve this concept by incorporating Cu atoms into the interlayers of tantalum disulfide (TaS2). The delocalized electrons of d-orbitals of the interlayered Cu can constitute the charge transfer pathways in the vertical direction, thus overcoming the hopping migration through vdW gaps. The vertical conductivity of TaS2 increased by 2 orders of magnitude. The TaS2 basal plane HER activity was extracted with an on-chip microcell. Modified by the delocalized electrons, the current density increased by 20 times, reaching an ultrahigh value of 800 mA cm-2 at -0.4 V without iR compensation.

3.
Nat Commun ; 15(1): 4368, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778090

RESUMEN

Two-dimensional (2D) AMX2 compounds are a family of mixed ionic and electronic conductors (where A is a monovalent metal ion, M is a trivalent metal, and X is a chalcogen) that offer a fascinating platform to explore intrinsic coupled ionic-electronic properties. However, the synthesis of 2D AMX2 compounds remains challenging due to their multielement characteristics and various by-products. Here, we report a separated-precursor-supply chemical vapor deposition strategy to manipulate the chemical reactions and evaporation of precursors, facilitating the successful fabrication of 20 types of 2D AMX2 flakes. Notably, a 10.4 nm-thick AgCrS2 flake shows superionic behavior at room temperature, with an ionic conductivity of 192.8 mS/cm. Room temperature ferroelectricity and reconfigurable positive/negative photovoltaic currents have been observed in CuScS2 flakes. This study not only provides an effective approach for the synthesis of multielement 2D materials with unique properties, but also lays the foundation for the exploration of 2D AMX2 compounds in electronic, optoelectronic, and neuromorphic devices.

4.
Small ; : e2400311, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804863

RESUMEN

Polarization-sensitive photodetection grounded on low-symmetry 2D materials has immense potential in improving detection accuracy, realizing intelligent detection, and enabling multidimensional visual perception, which has promising application prospects in bio-identification, optical communications, near-infrared imaging, radar, military, and security. However, the majority of the reported polarized photodetection are limited by UV-vis response range and low anisotropic photoresponsivity factor, limiting the achievement of high-performance anisotropic photodetection. Herein, 2D t-InTe crystal is introduced into anisotropic systems and developed to realize broadband-response and high-anisotropy-ratio polarized photodetection. Stemming from its narrow band gap and intrinsic low-symmetry lattice characteristic, 2D t-InTe-based photodetector exhibits a UV-vis-NIR broadband photoresponse and significant photoresponsivity anisotropy behavior, with an exceptional in-plane anisotropic factor of 1.81@808 nm laser, surpassing the performance of most reported 2D counterparts. This work expounds the anisotropic structure-activity relationship of 2D t-InTe crystal, and identifies 2D t-InTe as a prospective candidate for high-performance polarization-sensitive optoelectronics, laying the foundation for future multifunctional device applications.

6.
ACS Appl Mater Interfaces ; 16(11): 14038-14046, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445951

RESUMEN

The interplay between flexoelectric and optoelectronic characteristics provides a paradigm for studying emerging phenomena in various 2D materials. However, an effective way to induce a large and tunable strain gradient in 2D devices remains to be exploited. Herein, we propose a strategy to induce large flexoelectric effect in 2D ferroelectric CuInP2S6 by constructing a 1D-2D mixed-dimensional heterostructure. The strong flexoelectric effect is induced by enormous strain gradient up to 4.2 × 106 m-1 resulting from the underlying ZnO nanowires, which is further confirmed by the asymmetric coercive field and the red-shift in the absorption edge. The induced flexoelectric polarization efficiently boosts the self-powered photodetection performance. In addition, the improved photoresponse has a good correlation with the induced strain gradient, showing a consistent size-dependent flexoelectric effect. The mechanism of flexoelectric and optoelectronic coupling is proposed based on the Landau-Ginzburg-Devonshire double-well model, supported by density functional theory (DFT) calculations. This work provides a brand-new method to induce a strong flexoelectric effect in 2D materials, which is not restricted to crystal symmetry and thus offers unprecedented opportunities for state-of-the-art 2D devices.

7.
J Am Chem Soc ; 146(10): 6461-6465, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415580

RESUMEN

A consensus view in catalysis is that a higher density of catalytically active sites indicates a higher reaction rate. Using molecular dynamics simulations capable of mimicking the electrochemical formation of gas molecules, we herein demonstrate that this view is problematic for electrocatalytic gas production. Our simulation results show that a higher density of catalytic active sites does not necessarily indicate a higher reaction rate─a high density of active sites could lead to a reduction in the rate of reaction. Further analysis reveals that this abnormal phenomenon is ascribed to aggregation of the produced gas molecules near catalytic sites. This work challenges the consensus view and lays the groundwork for better developing gas-producing reaction electrocatalysts.

8.
ACS Nano ; 18(9): 6733-6739, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335468

RESUMEN

In the landscape of continuous downscaling metal-oxide-semiconductor field-effect transistors, two-dimensional (2D) semiconductors with atomic thinness emerge as promising channel materials for ultimate scaled devices. However, integrating compatible dielectrics with 2D semiconductors, particularly in a scalable way, remains a critical challenge that hinders the development of 2D devices. Recently, 2D inorganic molecular crystals (IMCs), which are free of dangling bonds and possess excellent dielectric properties and simplicity for scalable fabrication, have emerged as alternatives for gate dielectric integration in 2D devices. In this Perspective, we start with the introduction of structure and synthesis methods of IMCs and then discuss the explorations of using IMCs as the dielectrics, as well as some remaining relevant issues to be unraveled. Moreover, we look at the future opportunities of IMC dielectrics in 2D devices both for practical applications and fundamental research.

9.
Nat Mater ; 23(5): 596-603, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418925

RESUMEN

Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.

10.
Adv Mater ; 36(19): e2310218, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38315577

RESUMEN

The common clinical chemotherapy often brings serious side effects to patients, mainly due to the off-target and leakage of toxic drugs. However, this is fatal for some specific clinical tumors, such as brain tumors and neuroma. This study performs a drug-free approach by encapsulating black phosphorus (BP) and calcium peroxide (CaO2) in liposomes with surface-modified triphenylphosphonium (BCLT) to develop mitochondria targeting calcification for cancer therapy without damaging normal cells. BCLT preferentially accumulates inside tumor mitochondria and then is activated by near-infrared (NIR) laser irradiation to produce abundant PO4 3- and Ca2+ to accelerate in situ mitochondrial mineralization, leading to mitochondrial dysfunction and cancer cell death. More importantly, both PO4 3- and Ca2+ are essential components of metabolism in the body, and random gradient diffusion or premature leakage does not cause damage to adjacent normal cells. This achievement promises to be an alternative to conventional chemotherapy in clinical practice for many specific tumor types.


Asunto(s)
Mitocondrias , Fósforo , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fósforo/química , Liposomas/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Biomineralización , Línea Celular Tumoral , Animales , Peróxidos/química , Peróxidos/metabolismo , Compuestos Organofosforados/química , Compuestos de Calcio/química , Rayos Infrarrojos , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
11.
Adv Mater ; 36(19): e2309940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373410

RESUMEN

The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe7S8 core is enveloped snugly by a curved MoS2 dome shell (Fe7S8@MoS2), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe7S8 core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.

12.
J Am Chem Soc ; 146(9): 6053-6060, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38404063

RESUMEN

Two-dimensional (2D) materials with spin polarization have great potential for achieving next-generation spintronic applications. However, spin polarization of 2D materials is usually produced at a cryogenic temperature because of thermal fluctuations, which severely hinder their further applications. Here, we report room-temperature intrinsic magnetic-induced circularly polarized photoluminescence (PL) in 2D Er2O2S flakes. The geff factor of 2D Er2O2S stays at around -6.3 from the liquid He temperature limit to room temperature, which is independent of temperature. This anomalous phenomenon in Er2O2S is totally different from previous materials, which all have a decreasing Zeeman splitting with increasing temperature resulting from thermal fluctuations. The anomalous temperature-dependent magnetic-induced circularly polarized PL originates from the weak electron-phonon coupling in 2D Er2O2S, which has been proven by both the temperature-dependent Raman and theoretical calculations. This work sheds light on the understanding and manipulation of 2D materials for practical spintronic applications.

13.
Nature ; 626(7997): 86-91, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297172

RESUMEN

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

14.
Angew Chem Int Ed Engl ; 63(17): e202319462, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38286750

RESUMEN

Developing highly active oxygen evolution reaction (OER) catalysts in acidic conditions is a pressing demand for proton-exchange membrane water electrolysis. Manipulating proton character at the electrified interface, as the crux of all proton-coupled electrochemical reactions, is highly desirable but elusive. Herein we present a promising protocol, which reconstructs a connected hydrogen-bond network between the catalyst-electrolyte interface by coupling hydrophilic units to boost acidic OER activity. Modelling on N-doped-carbon-layer clothed Mn-doped-Co3O4 (Mn-Co3O4@CN), we unravel that the hydrogen-bond interaction between CN units and H2O molecule not only drags the free water to enrich the surface of Mn-Co3O4 but also serves as a channel to promote the dehydrogenation process. Meanwhile, the modulated local charge of the Co sites from CN units/Mn dopant lowers the OER barrier. Therefore, Mn-Co3O4@CN surpasses RuO2 at high current density (100 mA cm-2 @ ~538 mV).

15.
Small Methods ; 8(2): e2300175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37317014

RESUMEN

GaN's outstanding physical characteristics allow for a wide range of applications in numerous industries. Although individual GaN-based ultraviolet (UV) photodetectors are the subject of in-depth research in recent decades, the demand for photodetectors array is rising as a result of advances in optoelectronic integration technology. However, as a prerequisite for constructing GaN-based photodetectors array, large-area, patterned synthesis of GaN thin films remains a certain challenge. This work presents a facile technique for pattern growing high-quality GaN thin films for the assembly of an array of high-performance UV photodetectors. This technique uses UV lithography, which is not only very compatible with common semiconductor manufacturing techniques, but also enables precise patterning modification. A typical detector has impressive photo-response performance under 365 nm irradiation, with an extremely low dark current of 40 pA, a high Ilight /Idark ratio over 105 , a high responsivity of 4.23 AW-1 , and a decent specific detectivity of 1.76 × 1012 Jones. Additional optoelectronic studies demonstrate the strong homogeneity and repeatability of the photodetectors array, enabling it to serve as a reliable UV image sensor with enough spatial resolution. These outcomes highlight the proposed patterning technique's enormous potential.

16.
Adv Mater ; 35(52): e2309099, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953691

RESUMEN

Hetero-modulated neural activation is vital for adaptive information processing and learning that occurs in brain. To implement brain-inspired adaptive processing, previously various neurotransistors oriented for synaptic functions are extensively explored, however, the emulation of nonlinear neural activation and hetero-modulated behaviors are not possible due to the lack of threshold switching behavior in a conventional transistor structure. Here, a 2D van der Waals float gate transistor (FGT) that exhibits steep threshold switching behavior, and the emulation of hetero-modulated neuron functions (integrate-and-fire, sigmoid type activation) for adaptive sensory processing, are reported. Unlike conventional FGTs, the threshold switching behavior stems from impact ionization in channel and the coupled charge injection to float gate. When a threshold is met, a sub-30 mV dec-1 increase of transistor conductance by more than four orders is triggered with a typical switch time of approximately milliseconds. Essentially, by feeding light sensing signal as the modulation input, it is demonstrated that two typical tasks that rely on adaptive neural activation, including collision avoidance and adaptive visual perception, can be realized. These results may shed light on the emulation of rich hetero-modulating behaviors in biological neurons and the realization of biomimetic neuromorphic processing at low hardware cost.


Asunto(s)
Neuronas , Transistores Electrónicos , Neuronas/fisiología , Percepción Visual , Encéfalo , Cognición
17.
ACS Nano ; 17(23): 23989-23997, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982379

RESUMEN

Physical unclonable functions (PUFs) have been developed as promising strategies for secure authentication. Conventional strategies of PUFs have a limitation in the aspect of security for their static single channel. The introduction of polarization will endow a static PUF with many dynamic transformations based on polarized properties. Herein, high-security PUFs based on the polarized luminescence of chaotic luminescent patterns are fabricated by anisotropic rare earth (RE) material Er3O4Cl flakes. These derivatives under different polarizations show strong randomness (with similarity of the same PUF as high as 97%, while that for different PUFs is as low as 44%), which further widens the security and capacity of PUFs. Polarized luminescence control of Er3O4Cl patterns gives freedom to the PUFs and ensures a high encoding capacity of 2380000. Furthermore, we build a convolutional neural network (CNN) to realize fast intelligent authentication by extracting image features for convolution operation with a very high accuracy of 99.8% and fast classification speed in only 5 epochs.

18.
Nat Commun ; 14(1): 5662, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704609

RESUMEN

As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the 'speed-retention-endurance' dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10-100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.

19.
Adv Mater ; 35(46): e2305594, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37740257

RESUMEN

Detecting and distinguishing light polarization states, one of the most basic elements of optical fields, have significant importance in both scientific studies and industry applications. Artificially fabricated structures, e.g., metasurfaces with anisotropic absorptions, have shown the capabilities of detecting polarization light and controlling. However, their operations mainly rely on resonant absorptions based on structural designs that are usually narrow bands. Here, a mid-infrared (MIR) broadband polarization photodetector with high PRs and wavelength-dependent polarities using a 2D anisotropic/isotropic Nb2 GeTe4 /MoS2 van der Waals (vdWs) heterostructure is demonstrated. It is shown that the photodetector exhibits high PRs of 48 and 34 at 4.6  and 11.0 µm wavelengths, respectively, and even a negative PR of -3.38 for 3.7 µm under the zero bias condition at room temperature. Such interesting results can be attributed to the superimposed effects of a photovoltaic (PV) mechanism in the Nb2 GeTe4 /MoS2 hetero-junction region and a bolometric mechanism in the MoS2 layer. Furthermore, the photodetector demonstrates its effectiveness in bipolar and unipolar polarization encoding communications and polarization imaging enabled by its unique and high PRs.

20.
Proc Natl Acad Sci U S A ; 120(40): e2302851120, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748076

RESUMEN

Sequentially managing the coverage and dimerization of *CO on the Cu catalysts is desirable for industrial-current-density CO2 reduction (CO2R) to C2+, which required the multiscale design of the surface atom/architecture. However, the oriented design is colossally difficult and even no longer valid due to unpredictable reconstruction. Here, we leverage the synchronous leaching of ligand molecules to manipulate the seeding-growth process during CO2R reconstruction and construct Cu arrays with favorable (100) facets. The gradient diffusion in the reconstructed array guarantees a higher *CO coverage, which can continuously supply the reactant to match its high-rate consumption for high partial current density for C2+. Sequentially, the lower energy barriers of *CO dimerization on the (100) facets contribute to the high selectivity of C2+. Profiting from this sequential *CO management, the reconstructed Cu array delivers an industrial-relevant FEC2+ of 86.1% and an FEC2H4 of 60.8% at 700 mA cm-2. Profoundly, the atomic-molecular scale delineation for the evolution of catalysts and reaction intermediates during CO2R can undoubtedly facilitate various electrocatalytic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...