Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37248747

RESUMEN

Human Phenotype Ontology (HPO)-based approaches have gained popularity in recent times as a tool for genomic diagnostics of rare diseases. However, these approaches do not make full use of the available information on disease and patient phenotypes. We present a new method called Phen2Disease, which utilizes the bidirectional maximum matching semantic similarity between two phenotype sets of patients and diseases to prioritize diseases and genes. Our comprehensive experiments have been conducted on six real data cohorts with 2051 cases (Cohort 1, n = 384; Cohort 2, n = 281; Cohort 3, n = 185; Cohort 4, n = 784; Cohort 5, n = 208; and Cohort 6, n = 209) and two simulated data cohorts with 1000 cases. The results of the experiments showed that Phen2Disease outperforms the three state-of-the-art methods when only phenotype information and HPO knowledge base are used, particularly in cohorts with fewer average numbers of HPO terms. We also observed that patients with higher information content scores have more specific information, leading to more accurate predictions. Moreover, Phen2Disease provides high interpretability with ranked diseases and patient HPO terms presented. Our method provides a novel approach to utilizing phenotype data for genomic diagnostics of rare diseases, with potential for clinical impact. Phen2Disease is freely available on GitHub at https://github.com/ZhuLab-Fudan/Phen2Disease.


Asunto(s)
Ontologías Biológicas , Enfermedades Raras , Humanos , Semántica , Genómica , Fenotipo
2.
J Transl Med ; 20(1): 193, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35509104

RESUMEN

PURPOSE: We develop a new risk score to predict patients with stroke-associated pneumonia (SAP) who have an acute intracranial hemorrhage (ICH). METHOD: We applied logistic regression to develop a new risk score called ICH-LR2S2. It was derived from examining a dataset of 70,540 ICH patients between 2015 and 2018 from the Chinese Stroke Center Alliance (CSCA). During the training of ICH-LR2S2, patients were randomly divided into two groups - 80% for the training set and 20% for model validation. A prospective test set was developed using 12,523 patients recruited in 2019. To further verify its effectiveness, we tested ICH-LR2S2 on an external dataset of 24,860 patients from the China National Stroke Registration Management System II (CNSR II). The performance of ICH-LR2S2 was measured by the area under the receiver operating characteristic curve (AUROC). RESULTS: The incidence of SAP in the dataset was 25.52%. A 24-point ICH-LR2S2 was developed from independent predictors, including age, modified Rankin Scale, fasting blood glucose, National Institutes of Health Stroke Scale admission score, Glasgow Coma Scale score, C-reactive protein, dysphagia, Chronic Obstructive Pulmonary Disease, and current smoking. The results showed that ICH-LR2S2 achieved an AUC = 0.749 [95% CI 0.739-0.759], which outperforms the best baseline ICH-APS (AUC = 0.704) [95% CI 0.694-0.714]. Compared with the previous ICH risk scores, ICH-LR2S2 incorporates fasting blood glucose and C-reactive protein, improving its discriminative ability. Machine learning methods such as XGboost (AUC = 0.772) [95% CI 0.762-0.782] can further improve our prediction performance. It also performed well when further validated by the external independent cohort of patients (n = 24,860), ICH-LR2S2 AUC = 0.784 [95% CI 0.774-0.794]. CONCLUSION: ICH-LR2S2 accurately distinguishes SAP patients based on easily available clinical features. It can help identify high-risk patients in the early stages of diseases.


Asunto(s)
Neumonía , Accidente Cerebrovascular , Glucemia , Proteína C-Reactiva , Hemorragia Cerebral/complicaciones , Humanos , Hemorragias Intracraneales/complicaciones , Neumonía/complicaciones , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Accidente Cerebrovascular/complicaciones
3.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119083, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147561

RESUMEN

Airway wall remodeling, a main pathology of asthma was linked to vitamin-D deficiency and protein arginine methyltransferase-1 (PRMT1) expression in sub-epithelial cell layers. Calcitriol reduced remodeling in asthma model, but its mode of action is unclear. This study assessed the effect of calcitriol on PRMT1-dependent fibroblast remodeling in human lung fibroblasts, and allergen-induced asthma in E3-rats. Fibroblasts were activated with thymic stromal lymphopoietin (TLSP); asthma was induced by ovalbumin inhalation in rats. The airway structure was assessed by immunohistology. Protein expression in fibroblasts and activation of the mitogen activated protein kinases were detected by Western-blotting. Transcription factor activation was determined by luciferase reporter assay. PRMT1 action was blocked by siRNA and PRMT-inhibition. Ovalbumin upregulated the expression of TSLP, PRMT1, matrix metallopro-teinase-1 (MMP1), interleukin-25, and collagen type-I in sub-epithelial fibroblasts. In isolated fibroblasts, TSLP induced the same proteins, which were blocked by inhibition of Erk1/2 and p38. TLSP induced PRMT1 through activation of signal transducer and activator of transcription-3. PRMT1 inhibition reduced collagen type-I expression and suppressed MMP1. In fibroblasts, calcitriol supplementation over 12 days prevented TSLP-induced remodeling by blocking the PRMT1 levels. Interestingly, short-term calcitriol treatment had no such effect. The data support the beneficial role of calcitriol in asthma therapy.


Asunto(s)
Colágeno Tipo I/biosíntesis , Citocinas/metabolismo , Fibroblastos/metabolismo , Pulmón/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Calcitriol/farmacología , Línea Celular , Fibroblastos/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Ratas
4.
Biochim Biophys Acta Mol Cell Res ; 1868(6): 119017, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33741434

RESUMEN

BACKGROUND: Fasting changes mitochondrial function, and mTOR acts as a major regulator of mitochondrial energy production ensuring the survival under reduced supply of nutrition. This study assessed the role of protein arginine methyltransferase 1 (PRMT1), which regulates mitochondrial function, in the context of fasting. METHODS: The effect of fasting on mTOR signaling and mTOR-regulated mitochondrial mass was assessed in LO2 cells (in vitro) and C57BL/6J mice (in vivo). Biochemical parameters of fasting were determined in blood samples of mice. PRMT1 expression was investigated by transfecting LO2 cells with an expression vector. Gene expression was determined by real-time quantitative PCR, protein interaction by chromatin immunoprecipitation, protein expression by Western blotting and immunofluorescence microscopy, and the mitochondrial mass by MitoTracker staining. RESULTS: After 48 h of fasting, mTOR and PRMT1 expression, as well as mitochondrial mass, were significantly reduced in LO2 cells, and in liver tissue sections. Fasting downregulated the expression of miR-21 and upregulated the expression of its target phosphatase and tensin homolog (PTEN), which was responsible for reduced mTOR expression. Inhibition of mTOR reduced phosphorylation of STAT1, and thereby PRMT1 expression in LO2 cells. Low PRMT1 down-regulated the expression of peroxisome proliferator-activated receptor (PPAR)-γ and thereby decreased mitochondrial mass. Supplementation of insulin contracted the effect of fasting on all mentioned parameters. CONCLUSIONS: Fasting downregulates miR-21 and increases its target PTEN, thereby inhibiting mTOR signaling, p-STAT1, PRMT1, and mitochondrial mass. These findings highlight the role of mTOR and PRMT1 in the regulation of cellular energy availability.


Asunto(s)
Ayuno/sangre , Hepatocitos/citología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción STAT1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Ayuno/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Mitocondrias Hepáticas/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación
5.
J Immunol ; 206(1): 11-22, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239422

RESUMEN

Protein arginine methyltransferase-1 (PRMT1) is an important epigenetic regulator of cell function and contributes to inflammation and remodeling in asthma in a cell type-specific manner. Disease-specific expression patterns of microRNAs (miRNA) are associated with chronic inflammatory lung diseases, including asthma. The de novo synthesis of miRNA depends on the transcription of primary miRNA (pri-miRNA) transcript. This study assessed the role of PRMT1 on pri-miRNA to mature miRNA process in lung epithelial cells. Human airway epithelial cells, BEAS-2B, were transfected with the PRMT1 expression plasmid pcDNA3.1-PRMT1 for 48 h. Expression profiles of miRNA were determined by small RNA deep sequencing. Comparing these miRNAs with datasets of microarrays from five asthma patients (Gene Expression Omnibus dataset), 12 miRNAs were identified that related to PRMT1 overexpression and to asthma. The overexpression or knockdown of PRMT1 modulated the expression of the asthma-related miRNAs and their pri-miRNAs. Coimmunoprecipitation showed that PRMT1 formed a complex with STAT1 or RUNX1 and thus acted as a coactivator, stimulating the transcription of pri-miRNAs. Stimulation with TGF-ß1 promoted the interaction of PRMT1 with STAT1 or RUNX1, thereby upregulating the transcription of two miRNAs: let-7i and miR-423. Subsequent chromatin immunoprecipitation assays revealed that the binding of the PRMT1/STAT1 or PRMT1/RUNX1 coactivators to primary let-7i (pri-let-7i) and primary miR (pri-miR) 423 promoter was critical for pri-let-7i and pri-miR-423 transcription. This study describes a novel role of PRMT1 as a coactivator for STAT1 or RUNX1, which is essential for the transcription of pri-let-7i and pri-miR-423 in epithelial cells and might be relevant to epithelium dysfunction in asthma.


Asunto(s)
Asma/metabolismo , Pulmón/patología , MicroARNs/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Mucosa Respiratoria/metabolismo , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Perfilación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Proteína-Arginina N-Metiltransferasas/genética , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Mucosa Respiratoria/patología , Factor de Transcripción STAT1/metabolismo , Análisis de Secuencia de ARN , Factor de Crecimiento Transformador beta1/metabolismo
6.
Eur Respir J ; 54(6)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31467116

RESUMEN

Bronchial thermoplasty (BT) is to date the only therapy that provides a lasting reduction in airway wall remodelling. However, the mechanism of action of BT is not well understood. This study aimed to characterise the changes of remodelling regulating signalling pathways by BT in asthma.Bronchoalveolar lavage fluid (BALF) was obtained from eight patients with severe asthma before and after BT. Primary bronchial epithelial cells were isolated from 23 patients before (n=66) and after (n=62) BT. Epithelial cell culture supernatant (Epi.S) was collected and applied to primary fibroblasts.Epithelial cells obtained from asthma patients after BT proliferated significantly faster compared with epithelial cells obtained before BT. In airway fibroblasts, BALF or Epi.S obtained before BT increased CCAAT enhancer-binding protein-ß (C/EBPß) expression, thereby downregulating microRNA-19a. This upregulated extracellular signal-regulated kinase-1/2 (ERK1/2) expression, protein arginine methyltransferase-1 (PRMT1) expression, cell proliferation and mitochondrial mass. BALF or Epi.S obtained after BT reduced the expression of C/EBPß, ERK1/2, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), PRMT1 and mitochondrial mass in airway fibroblasts. Proteome and transcriptome analyses indicated that epithelial cell-derived heat shock protein-60 (HSP60) is the main mediator of BT effects on fibroblasts. Further analysis suggested that HSP60 regulated PRMT1 expression, which was responsible for the increased mitochondrial mass and α-smooth muscle actin expression by asthmatic fibroblasts. These effects were ablated after BT. These results imply that BT reduces fibroblast remodelling through modifying the function of epithelial cells, especially by reducing HSP60 secretion and subsequent signalling pathways that regulate PRMT1 expression.We therefore hypothesise that BT decreases airway remodelling by blocking epithelium-derived HSP60 secretion and PRMT1 in fibroblasts.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Asma/patología , Termoplastia Bronquial , Chaperonina 60/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Líquido del Lavado Bronquioalveolar , Proliferación Celular , Células Cultivadas , Epitelio/metabolismo , Fibroblastos/metabolismo , Humanos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA