Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 237(12): 4544-4550, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36256845

RESUMEN

Rapeseed is an important source of oilseed crop in the world. Achieving genetic improvement has always been the major goal in rapeseed production. Single nucleotide substitution is the basis of most genetic variation underpinning important agronomic traits. Nowadays, Cas-base editing acts as an efficient tool to mediate single-base substitution at the target site. In this study, four adenine base editors (ABE) were modified to achieve adenosine base editing at different genome sites in allotetraploid Brassica napus. We designed 18 small guide RNAs to target phytoene desaturase (PDS), acetolactate synthase (ALS), CLAVATA3 (CLV3), CLV2, TRANSPARENT TESTA12 (TT12), carotenoid isomerase (CRTISO), designated de-etiolated-2 (DET2), BRANCHED1 (BRC1), zeaxanthin epoxidase (ZEP) genes, respectively. Among the four ABE systems, pBGE17 had the highest base-editing efficiency, with an average editing efficiency of 3.51%. Target sequencing results revealed that the editing window ranged from A5 to A8 of the protospacer-adjacent motif (PAM) sequence. Moreover, the ABEmax-nCas9NG system with NG PAM was developed, with a base-editing efficiency of 1.22%. These results revealed that ABE system developed in this study could efficiently induce A to G substitution and the ABE-nCas9NG system could broaden editing window in oilseed rape.


Asunto(s)
Brassica napus , Edición Génica , Adenina , Brassica napus/genética , Edición Génica/métodos , Genoma de Planta , ARN Guía de Sistemas CRISPR-Cas , Tetraploidía
2.
J Cell Physiol ; 236(3): 1996-2007, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32841372

RESUMEN

Seed size and number are central to the evolutionary fitness of plants and are also crucial for seed production of crops. However, the molecular mechanisms of seed production control are poorly understood in Brassica crops. Here, we report the gene cloning, expression analysis, and functional characterization of the EOD3/CYP78A6 gene in rapeseed. BnaEOD3 has four copies located in two subgenomes, which exhibited a steady higher expression during seed development with differential expression among copies. The targeted mutations of BnaEOD3 gene were efficiently generated by stable transformation of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat) vector. These mutations were stably transmitted to T1 and T2 generations and a large collection of homozygous mutants with combined loss-of-function alleles across four BnaEOD3 copies were created for phenotyping. All mutant T1 lines had shorter siliques, smaller seeds, and an increased number of seeds per silique, in which the quadrable mutants showed the most significant changes in these traits. Consequently, the seed weight per plant in the quadrable mutants increased by 13.9% on average compared with that of wild type, indicating that these BnaEOD3 copies have redundant functions in seed development in rapeseed. The phenotypes of the different allelic combinations of BnaEOD3 copies also revealed gene functional differentiation among the two subgenomes. Cytological observations indicated that the BnaEOD3 could act maternally to promote cotyledon cell expansion and proliferation to regulate seed growth in rapeseed. Collectively, our findings reveal the quantitative involvement of the different BnaEOD3 copies function in seed development, but also provided valuable resources for rapeseed breeding programs.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Brassica napus/genética , Genes de Plantas , Mutagénesis/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Tamaño de la Célula , Clonación Molecular , Cotiledón/anatomía & histología , Cotiledón/crecimiento & desarrollo , Edición Génica , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Tamaño de los Órganos , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN Guía de Kinetoplastida/genética , Homología de Secuencia de Aminoácido
3.
Front Genome Ed ; 2: 605768, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34713230

RESUMEN

Rapeseed is one of the world's most important sources of oilseed crops. Single nucleotide substitution is the basis of most genetic variation underpinning important agronomic traits. Therefore, genome-wide and target-specific base editing will greatly facilitate precision plant molecular breeding. In this study, four CBE systems (BnPBE, BnA3A-PBE, BnA3A1-PBE, and BnPBGE14) were modified to achieve cytidine base editing at five target genes in rapeseed. The results indicated that genome editing is achievable in three CBEs systems, among which BnA3A1-PBE had the highest base-editing efficiency (average 29.8% and up to 50.5%) compared to all previous CBEs reported in rapeseed. The editing efficiency of BnA3A1-PBE is ~8.0% and fourfold higher, than those of BnA3A-PBE (averaging 27.6%) and BnPBE (averaging 6.5%), respectively. Moreover, BnA3A1-PBE and BnA3A-PBE could significantly increase the proportion of both the homozygous and biallelic genotypes, and also broaden the editing window compared to BnPBE. The cytidine substitution which occurred at the target sites of both BnaA06.RGA and BnaALS were stably inherited and conferred expected gain-of-function phenotype in the T1 generation (i.e., dwarf phenotype or herbicide resistance for weed control, respectively). Moreover, new alleles or epialleles with expected phenotype were also produced, which served as an important resource for crop improvement. Thus, the improved CBE system in the present study, BnA3A1-PBE, represents a powerful base editor for both gene function studies and molecular breeding in rapeseed.

4.
Plant Biotechnol J ; 18(5): 1153-1168, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637846

RESUMEN

Yellow seed is a desirable trait with great potential for improving seed quality in Brassica crops. Unfortunately, no natural or induced yellow seed germplasms have been found in Brassica napus, an important oil crop, which likely reflects its genome complexity and the difficulty of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we demonstrate the first application of CRISPR/Cas9 for creating yellow-seeded mutants in rapeseed. The targeted mutations of the BnTT8 gene were stably transmitted to successive generations, and a range of homozygous mutants with loss-of-function alleles of the target genes were obtained for phenotyping. The yellow-seeded phenotype could be recovered only in targeted mutants of both BnTT8 functional copies, indicating that the redundant roles of BnA09.TT8 and BnC09.TT8b are vital for seed colour. The BnTT8 double mutants produced seeds with elevated seed oil and protein content and altered fatty acid (FA) composition without any serious defects in the yield-related traits, making it a valuable resource for rapeseed breeding programmes. Chemical staining and histological analysis showed that the targeted mutations of BnTT8 completely blocked the proanthocyanidin (PA)-specific deposition in the seed coat. Further, transcriptomic profiling revealed that the targeted mutations of BnTT8 resulted in the broad suppression of phenylpropanoid/flavonoid biosynthesis genes, which indicated a much more complex molecular mechanism underlying seed colour formation in rapeseed than in Arabidopsis and other Brassica species. In addition, gene expression analysis revealed the possible mechanism through which BnTT8 altered the oil content and fatty acid composition in seeds.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Color , Mutagénesis/genética , Semillas/genética
5.
Theor Appl Genet ; 132(7): 2111-2123, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30980103

RESUMEN

The INDEHISCENT (IND) and ALCATRAZ (ALC) gene homologues have been reported to be essential for dehiscence of fruits in Brassica species. But their functions for pod shatter resistance in Brassica napus, an important oil crops, are not well understood. Here, we assessed the functions of these two genes in rapeseed using CRISPR/Cas9 technology. The induced mutations were stably transmitted to successive generations, and a variety of homozygous mutants with loss-of-function alleles of the target genes were obtained for phenotyping. The results showed that the function of BnIND gene is essential for pod shatter and highly conserved in Brassica species, whereas the BnALC gene appears to have limited potential for rapeseed shatter resistance. The homoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a strategy to improve polyploid crops.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brassica napus/genética , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Semillas/fisiología , Alelos , Edición Génica , Técnicas de Inactivación de Genes , Genes de Plantas , Fenotipo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA