Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 357, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127630

RESUMEN

BACKGROUND: Porcine beta defensin 2 (pBD2) is one of the porcine beta defensins that has antibacterial activity, and plays an important role in the immunomodulatory activity that protects cells from pathogens. It has been reported that pBD2 plays their immunomodulatory functions related to the TLR4-NF-κB signal pathways. However, it is not completely clear how pBD2 reduces the inflammatory response caused by pathogens. RESULTS: In this study, the effect of pBD2 on the expression of genes in the TLRs signaling pathway was investigated after IPEC-J2 cells were challenged with E. coli. The results showed that pBD2 decreased the expression of IL-8 induced by E. coli (P < 0.05), and pBD2 significantly decreased the expression of TLR4, TLR5 and TLR7 (P < 0.05), as well as the key downstream genes p38 and JNK which activated by E. coli (P < 0.05). In addition, pBD2 inhibited the p-p65, p-p38 and p-JNK which were up-regulated by E. coli. CONCLUSIONS: pBD2 could reduce the inflammatory response induced by E. coli perhaps by inhibiting the TLRs-TAK1-NF-κB/MAPK signaling pathway which was activated by E. coli in IPEC-J2 cells. Our study further reveals the immunomodulatory activity of recombinant pBD2 against E. coli, and provides insights into the molecular mechanisms that protect cells from E. coli infection.


Asunto(s)
Escherichia coli , FN-kappa B , Receptores Toll-Like , beta-Defensinas , Animales , beta-Defensinas/metabolismo , beta-Defensinas/genética , Porcinos , FN-kappa B/metabolismo , Línea Celular , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación , Transducción de Señal
2.
J Proteome Res ; 23(7): 2641-2650, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38906844

RESUMEN

To investigate the mechanisms underlying the differences in the freezability of boar semen, Yorkshire boars with freezing-tolerant semen (YT, n = 3), Yorkshire boars with freezing-sensitive semen (YS, n = 3), Landrace boars with freezing-tolerant semen (LT, n = 3), and Landrace boars with freezing-sensitive semen (LS, n = 3) were selected for this study. Their sperm was subjected to protein extraction, followed by data-independent acquisition proteomics and functional bioinformatics analysis. A total of 3042 proteins were identified, of which 2810 were quantified. Some key KEGG pathways were enriched, such as starch and sucrose metabolism, carbohydrate digestion and absorption, mineral absorption, the HIF-1 signaling pathway, and the necroptosis pathways. Through PRM verification, we found that several proteins, such as α-amylase and epididymal sperm-binding protein 1, can be used as molecular markers of the freezing resistance of boar semen. Furthermore, we found that the addition of α-amylase to cryoprotective extender could significantly improve the post-thaw motility and quality of boar semen. In summary, this study revealed some molecular markers and potential molecular pathways contributing to the high or low freezability of boar sperm, identifying α-amylase as a key protein. This study is valuable for optimizing boar semen cryopreservation technology.


Asunto(s)
Criopreservación , Proteómica , Preservación de Semen , Motilidad Espermática , Espermatozoides , alfa-Amilasas , Animales , Masculino , Espermatozoides/metabolismo , Proteómica/métodos , Porcinos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Criopreservación/veterinaria , alfa-Amilasas/metabolismo , Congelación , Crioprotectores/farmacología , Análisis de Semen/métodos , Análisis de Semen/veterinaria , Proteoma/metabolismo , Proteoma/análisis
3.
Genes (Basel) ; 14(12)2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38136955

RESUMEN

Reproductive traits hold considerable economic importance in pig breeding and production. However, candidate genes underpinning the reproductive traits are still poorly identified. In the present study, we executed a genome-wide association study (GWAS) and runs of homozygosity (ROH) analysis using the PorcineSNP50 BeadChip array for 585 Yorkshire pigs. Results from the GWAS identified two genome-wide significant and eighteen suggestive significant single nucleotide polymorphisms (SNPs) associated with seven reproductive traits. Furthermore, we identified candidate genes, including ELMO1, AOAH, INSIG2, NUP205, LYPLAL1, RPL34, LIPH, RNF7, GRK7, ETV5, FYN, and SLC30A5, which were chosen due to adjoining significant SNPs and their functions in immunity, fertilization, embryonic development, and sperm quality. Several genes were found in ROH islands associated with spermatozoa, development of the fetus, mature eggs, and litter size, including INSL6, TAF4B, E2F7, RTL1, CDKN1C, and GDF9. This study will provide insight into the genetic basis for pig reproductive traits, facilitating reproduction improvement using the marker-based selection methods.


Asunto(s)
Estudio de Asociación del Genoma Completo , Semen , Embarazo , Femenino , Porcinos/genética , Masculino , Animales , Reproducción/genética , Homocigoto , Fenotipo
4.
Animals (Basel) ; 13(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37106959

RESUMEN

The diversification of indigenous pig breeds in China has resulted from multiple climate, topographic, and human cultural influences. The numerous indigenous pig breeds can be geographically divided into six meta-populations; however, their genetic relationships, contributions to genetic diversity, and genetic signatures remain unclear. Whole-genome SNP data for 613 indigenous pigs from the six Chinese meta-populations were obtained and analyzed. Population genetic analyses confirmed significant genetic differentiation and a moderate mixture among the Chinese indigenous pig meta-populations. The North China (NC) meta-population had the largest contribution to genetic and allelic diversity. Evidence from selective sweep signatures revealed that genes related to fat deposition and heat stress response (EPAS1, NFE2L2, VPS13A, SPRY1, PLA2G4A, and UBE3D) were potentially involved in adaptations to cold and heat. These findings from population genetic analyses provide a better understanding of indigenous pig characteristics in different environments and a theoretical basis for future work on the conservation and breeding of Chinese indigenous pigs.

5.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077151

RESUMEN

Defensins play an important role in fighting bacteria, and are a good candidate for bactericidal agents. However, the function and mechanism of defensins in regulating host responses against bacteria is unclear. In this study, transcriptome analysis was used to study the comprehensive functions of pBD2 in IPEC-J2 cells against E. coli. In total, 230 differentially expressed genes (DEGs) were identified in IPEC-J2 cells between the control and E. coli groups, and were found by KEGG analysis to be involved in many signaling pathways related to immunity. Furthermore, 812 DEGs were observed between E. coli and E. coli +pBD2 groups, involved in the ribosome, oxidative phosphorylation, and certain disease pathways. Among these, 94 overlapping DEGs were in the two DEG groups, and 85 DEGs were reverse expression, which is involved in microRNA in cancer, while PTEN and CDC6 were key genes according to PPI net analysis. The results of qRT-PCR verified those of RNA-seq. The results indicated that pBD2 plays an important role against E. coli by acting on the genes related to immune response, cell cycle, ribosomes, oxidative phosphorylation, etc. The results provide new insights into the potential function and mechanism of pBD2 against E. coli. Meanwhile, this study provides a certain theoretical basis for research and the development of novel peptide drugs.


Asunto(s)
Defensinas/metabolismo , Infecciones por Escherichia coli , Escherichia coli , Animales , Línea Celular , Infecciones por Escherichia coli/inmunología , Perfilación de la Expresión Génica , Humanos , RNA-Seq , Porcinos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA