Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Skelet Muscle ; 11(1): 15, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107998

RESUMEN

BACKGROUND: Diabetes-related muscle wasting is one of the devastating complications of diabetes, which is associated with muscle autophagy due to insulin-mediated glucose starvation. However, treatment for diabetes-related muscle wasting is limited. Our previous study already found that niclosamide ethanolamine salt has the therapeutic effects on insulin deficiency of type 1 diabetes mice and muscle wasting induced by doxorubicin. Therefore, we aim to investigate the therapeutic effects of niclosamide ethanolamine salt on diabetes-induced muscle wasting and to explore whether the mechanism is associated with muscle autophagy. METHODS: Type 1 diabetes mice were induced by intraperitoneal injection of streptozotocin, then were fed with regular diet supplemented with 10 g/kg niclosamide ethanolamine salt. The whole experiment lasted for 8 weeks. At the end of the study, grip strength, weights of tibialis anterior, gastrocnemius, soleus, and extensor digitorum longus muscle were measured. Tibialis anterior muscles stained with PAS were used for evaluating the fiber cross sectional area. Immunofluorescence analysis of myosin heavy chain expression in extensor digitorum longus and soleus muscle was used for determining the composition of the muscle fiber type. Electronic microscopy was applied to observe the autophagy in the atrophied muscle. Serum insulin levels and fasting blood glucose were also measured. Tissues of gastrocnemius muscle were used for detecting the expression of the proteins related to autophagy. RESULTS: In this study, we found that niclosamide ethanolamine salt could ameliorate muscle atrophy in the type 1 diabetes mice as well, such as enhancing the declined grip strength, improving limb weight and increasing the numbers of glycolytic muscle fiber. Electron microscopy also confirmed that there did exist abundant autophagic vacuoles in the atrophied muscle of the type 1 diabetes mice. Specifically, niclosamide ethanolamine salt could reduce the over expression of autophagy-related proteins, including p-AMPK (Thr172), FoxO3a, p-ULK1 (Ser555), LC3B II, and p-p38 in gastrocnemius muscle of the type 1 diabetes mice. CONCLUSION: Niclosamide ethanolamine salt could ameliorate muscle wasting. The mechanisms underlying might be associated with inhibition of muscle autophagy.


Asunto(s)
Diabetes Mellitus , Niclosamida , Animales , Autofagia , Etanolamina , Etanolaminas , Ratones , Músculo Esquelético , Músculos , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Niclosamida/farmacología
2.
Sci Rep ; 11(1): 1266, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446820

RESUMEN

The kidney is a high-energy demand organ rich in mitochondria especially renal tubular cells. Emerging evidence suggests that mitochondrial dysfunction, redox imbalance and kidney injury are interconnected. Artemether has biological effects by targeting mitochondria and exhibits potential therapeutic value for kidney disease. However, the underlying molecular mechanisms have not been fully elucidated. This study was performed to determine the effects of artemether on Adriamycin-induced nephropathy and the potential mechanisms were also investigated. In vivo, an Adriamycin nephropathy mouse model was established, and mice were treated with or without artemether for 2 weeks. In vitro, NRK-52E cells were stimulated with TGF-ß1 and treated with or without artemether for 24 h. Then renal damage and cell changes were evaluated. The results demonstrated that artemether reduced urinary protein excretion, recovered podocyte alterations, attenuated pathological changes and alleviated renal tubular injury. Artemether also downregulated TGF-ß1 mRNA expression levels, inhibited tubular proliferation, restored tubular cell phenotypes and suppressed proliferation-related signalling pathways. In addition, artemether restored renal redox imbalance, increased mtDNA copy number and improved mitochondrial function. In summary, we provided initial evidence that artemether ameliorates kidney injury by restoring redox imbalance and improving mitochondrial function in Adriamycin nephropathy in mice. Artemether may be a promising agent for the treatment kidney disease.


Asunto(s)
Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Animales , Doxorrubicina , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción/efectos de los fármacos , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología
3.
Am J Transl Res ; 12(9): 5015-5031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042403

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organ involvement. Lupus nephritis (LN) is a severe manifestation of the disease and the most common cause of mortality in SLE patients. The etiology of LN is multifactorial and accumulating evidence suggests that mitochondrial dysfunction contributes to LN initiation and progression. Mild mitochondrial uncoupler niclosamide ethanolamine salt (NEN) has recently been shown to be efficacious in the treatment of both diabetic kidney disease and non-diabetic adriamycin nephropathy. However, its role in autoimmune kidney disease has not been explored. Here, we report for the first time that NEN attenuated SLE and lupus nephritis in MRL/lpr mice. NEN treatment reduced urinary protein excretion and attenuated glomerular lesions in this model. NEN treatment also decreased urinary excretion of tubular injury biomarkers NGAL and Kim-1, restored renal tubule phenotypic alterations, inhibited tubular proliferation, and suppressed renal interstitial inflammation and fibrosis. In addition, NEN diet supplementation restored redox imbalance, promoted mitochondrial biogenesis, and improved energy dysregulation in the kidney. Importantly, NEN prevented the enlargement of lymph nodes and the spleen, and decreased serum anti-dsDNA antibody levels in the MRL/lpr mice. Therefore, our data suggest that this mild mitochondrial uncoupling agent has great potential for translational application as a novel therapy for autoimmune disease.

4.
Int J Clin Exp Pathol ; 13(5): 827-836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509053

RESUMEN

Evidences demonstrated that the effect on anti-proteinuria and renal protection of Chinese herbs combination with ACEi or ARB seemed to be better than ACEi or ARB alone. Astragaloside IV could decrease the urinary albumin excretion rate and could protect against renal injuries linking to its anti-oxidation ability. We aimed to investigate the effect of astragaloside IV combined with ACEi on diabetic nephropathy and to explore whether its underlying mechanism is dependent on anti-oxidation. 8-week-old male experiment mice were randomly assigned to five groups: lean wild type (wt) group, db/db group, db/db + astragaloside IV group, db/db + enalapril group, db/db + combination therapy with astragaloside IV and enalapril group. During the experiment, 24 hours urinary albumin, fasting glucose, body weight, and metabolic parameters were monitored in regular intervals. At the end of the study, tail blood pressure, serum H2O2, lipid, and liver function were measured and kidney histological injuries were evaluated. Results of the study indicated that combination therapy with astragaloside IV and ACEi further reduced 24 hours urinary albumin excretion rate, blood pressure, and body weight. Combination therapy reduced the foot process width, glomerular base membrane thickness, glomerular tuft cell proliferation, tubular cell atrophy, tubular base membrane thickness, and improved tubular cell proliferation. It modulated the body H2O2 metabolism and up-regulated the expression of the catalase in renal cortex. Astragaloside IV combined with ACEi exerted renal protective effects in db/db mice more significantly than their individual used. The mechanism possibly involved their synergistic effects on anti-oxidation.

5.
Am J Transl Res ; 11(6): 3879-3889, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312396

RESUMEN

Many patients with type 1 diabetes mellitus suffer from progressive diabetic kidney disease (DKD). The progression of DKD is largely attributed to mitochondrial dysfunction, with key contributions from mitochondrial reactive oxygen species. Recent studies have revealed that the antimalarial drug artemether has antidiabetic effects. To identify potential effects on type 1 DKD in the present study, mice with streptozotocin-induced diabetes were treated with artemether. Treatment reduced urinary excretion of albumin and tubular injury biomarkers, increased serum albumin and total protein levels, and attenuated renal hypertrophy. In addition, artemether treatment prevented hyperglycemia, raised serum insulin levels, and restored glucagon/insulin and somatostatin/insulin ratios in islets. We found that artemether improved mitochondrial function and regulated redox balance in kidney. These results demonstrate that artemether provides renal protection in type 1 diabetes mellitus, which may be due to improved mitochondrial function.

6.
Am J Transl Res ; 11(3): 1389-1402, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972169

RESUMEN

Diabetic kidney disease (DKD), the leading cause of kidney failure, is characterized by albuminuria and renal hypertrophy. Metabolic alterations and mitochondrial dysfunction play critical roles in DKD initiation and progression. Artemether, a methyl ether derivative of artemisinin used for the treatment of malaria, has been identified as a putative candidate for treating diabetes, but its effect on DKD has not been studied. The goal of this study was to examine the effect of artemether on type 2 diabetic db/db mice. Our results show that artemether reduced urinary albumin excretion, prevented diabetic kidney hypertrophy, attenuated glomerular basement membrane and tubular basement membrane thickening, and ameliorated foot process effacement in type 2 diabetic db/db mice. Artemether also protected against hyperglycemia and improved diabetic symptoms. In addition, it increased serum insulin level and restored the normal ratio of insulin, glucagon, and somatostatin levels in islets. Specifically, artemether increased the respiratory exchange ratio and regulated mitochondrial function and the redox state in the kidney. In conclusion, this experiment confirmed the renal protection ability of artemether in DKD. The mechanisms of this effect might be associated with the ability of artemether to increase mitochondrial pyruvate carrier content.

7.
Am J Transl Res ; 11(2): 855-864, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899385

RESUMEN

Chronic kidney disease (CKD) is commonly characterized by proteinuria and leads to progressive glomerulosclerosis and tubulointerstitial fibrosis. Accumulating evidence implicates mitochondrial dysfunction including reactive oxygen species (ROS) overproduction in the pathogenesis of CKD. Mitochondrial function and ROS production are regulated by mitochondrial uncoupling. Niclosamide ethanolamine salt (NEN) is a mild mitochondrial uncoupler, which reduces urinary albumin excretion in mice with diabetic kidney disease. However, its role in nondiabetic kidney disease has not been investigated. Here we show that NEN exerts renoprotective effects in adriamycin induced nondiabetic kidney disease. It reduces urinary protein excretion, restores podocyte function, ameliorates renal pathological injury, and decreases the excretion of the urinary tubular injury biomarkers NGAL and Kim-1. Specifically, NEN uncouples isolated kidney mitochondria, and dose-dependently decreases the renal production and urinary excretion of H2O2. Moreover, NEN increases catalase and PGC-1α expression, which might accelerate H2O2 scavenging. The results of this study provide the first evidence that NEN protects kidney in nondiabetic kidney disease by regulating redox balance.

8.
Diabetes Res Clin Pract ; 144: 25-33, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30081104

RESUMEN

AIMS: Early diabetic kidney disease (DKD) is characterized by renal hypertrophy and albuminuria. The mTOR signal pathway is closely related to DKD. This study was performed to determine the renal protection of niclosamide ethanolamine salt (NEN) which was identified as mTOR inhibitor. METHODS: Type 2 diabetes (T2D) db/db mice were used and divided into db/db and db/db + NEN groups. Lean wild type mice served as T2D-control. NEN treatment lasted for 12 weeks. The kidney morphological changes, urine indices, blood glucose and metabolic symptoms were evaluated. In addition, the effects of NEN on kidney mitochondria and mTOR/4E-BP pathway were also measured. RESULTS: NEN could prevent diabetic kidney hypertrophy and alleviate glomerular mesangial expansion, attenuate GBM and TBM thickening in db/db mice. It also restored podocyte dysfunction, reduced urinary albumin, NAG, NGAL, and TGF-ß1 excretion. Specifically, it could uncouple kidney mitochondria and significantly inhibit renal cortical activation of mTOR/4E-BP1 pathway. CONCLUSIONS: This study demonstrated that NEN could improve kidney injury in db/db mice and has the potential to translate to future clinical studies.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/prevención & control , Etanolamina/farmacología , Riñón/efectos de los fármacos , Niclosamida/farmacología , Animales , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/etiología , Riñón/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Niclosamida/análogos & derivados , Consumo de Oxígeno/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...