Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.286
1.
Mol Cytogenet ; 17(1): 12, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741090

BACKGROUND: Both copy number variant-sequencing (CNV-seq) and karyotype analysis have been used as powerful tools in the genetic aetiology of fetuses with congenital heart diseases (CHD). However, CNV-seq brings clinicians more confusions to interpret the detection results related to CHD with or without extracardiac abnormalities. Hence, we conducted this study to investigate the clinical value of CNV-seq in fetuses with CHD. RESULTS: A total of 167 patients with fetal CHD including 36 single CHD (sCHD), 41 compound CHD (cCHD) and 90 non-isolated CHD (niCHD) were recruited into the study. 28 cases (16.77%, 28/167) were revealed with chromosomal abnormalities at the level of karyotype. The pathogenic detection rate (DR) of CNV-seq (23.17%, 19/82) was higher than that of karyotyping (15.85%, 13/82) in 82 cases by CNV-seq and karyotyping simultaneously. The DR of pathogenic copy number variations (PCNVs) (31.43%) was higher in niCHD subgroup than that in sCHD and cCHD (9.52% and 23.08%). Conotruncal defect (CTD) was one of the most common heart malformations with the highest DR of PCNVs (50%) in 7 categories of CHD. In terms of all the pregnancy outcomes, 67 (40.12%) cases were terminated and 100 (59.88%) cases were live neonates. Only two among 34 cases with a pathogenic genetic result chose to continue the pregnancy. CONCLUSIONS: CNV-seq combined with karyotyping is a reliable and accurate prenatal technique for identifying pathogenic chromosomal abnormalities associated with fetal CHD with or without extracardiac abnormalities, which can assist clinicians to perform detailed genetic counselling with regard to the etiology and related outcomes of CHD.

2.
J Mol Med (Berl) ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38739269

Immune checkpoint inhibitors (ICIs) have achieved impressive success in lung adenocarcinoma (LUAD). However, the response to ICIs varies among patients, and predictive biomarkers are urgently needed. PCDH11X is frequently mutated in LUAD, while its role in ICI treatment is unclear. In this study, we curated genomic and clinical data of 151 LUAD patients receiving ICIs from three independent cohorts. Relations between PCDH11X and treatment outcomes of ICIs were examined. A melanoma cohort collected from five published studies, a pan-cancer cohort, and non-ICI-treated TCGA-LUAD cohort were also examined to investigate whether PCDH11X mutation is a specific predictive biomarker for LUAD ICI treatment. Among the three ICI-treated LUAD cohorts, PCDH11X mutation (PCDH11X-MUT) was associated with better clinical response compared to wild-type PCDH11X (PCDH11X-WT). While in ICI-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and the non-ICI-treated TCGA-LUAD cohort, no significant differences in overall survival (OS) were observed between the PCDH11X-MUT and PCDH11X-WT groups. PCDH11X mutation was associated with increased PD-L1 expression, tumor mutation burden (TMB), neoantigen load, DNA damage repair (DDR) mutations, and hot tumor microenvironment in TCGA-LUAD cohort. Our findings suggested that the PCDH11X mutation might serve as a specific biomarker to predict the efficacy of ICIs for LUAD patients. Considering the relatively small sample size of ICI-treated cohorts, future research with larger cohorts and prospective clinical trials will be essential for validating and further exploring the role of PCDH11X mutation in the context of immunotherapy outcomes in LUAD. KEY MESSAGES: PCDH11X mutation is associated with better clinical response compared to wild type PCDH11X in three ICIs-treated LUAD cohorts. In ICIs-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and non-ICIs-treated TCGA-LUAD cohorts PCDH11X mutation is not associated with better clinical response, suggesting PCDH11X mutation might be a specific biomarker to predict the efficacy of ICIs treatment for LUAD patients. PCDH11X mutation is associated with increased PD-L1 expression, tumor mutation burden, and neoantigen load in TCGA-LUAD cohort. PCDH11X mutation is associated with hot tumor microenvironment in TCGA-LUAD cohort.

3.
BMJ Open ; 14(5): e079062, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740500

OBJECTIVES: This qualitative study aimed to explore opportunities to strengthen tuberculosis (TB) health service delivery from the perspectives of health workers providing TB care in Shigatse prefecture of Tibet Autonomous Region, China. DESIGN: Qualitative research, semi-structured in-depth interviews. SETTING: The TB care ecosystem in Shigatse, including primary and community care. PARTICIPANTS: Participants: 37 semi-structured interviews were conducted with village doctors (14), township doctors and nurses (14), county hospital doctors (7) and Shigatse Centre for Disease Control staff (2). RESULTS: The three main themes reported include (1) the importance of training primary and community health workers to identify people with symptoms of TB, ensure TB is diagnosed and link people with TB to further care; (2) the need to engage community health workers to ensure retention in care and adherence to TB medications; and (3) the opportunity for innovative technologies to support coordinated care, retention in care and adherence to medication in Shigatse. CONCLUSIONS: The quality of TB care could be improved across the care cascade in Tibet and other high-burden, remote settings by strengthening primary care through ongoing training, greater support and inclusion of community health workers and by leveraging technology to create a circle of care. Future formative and implementation research should include the perspectives of health workers at all levels to improve care organisation and delivery.


Community Health Workers , Qualitative Research , Rural Health Services , Tuberculosis , Humans , Tibet , Tuberculosis/therapy , Tuberculosis/prevention & control , Rural Health Services/organization & administration , Community Health Workers/education , Female , Male , Interviews as Topic , Adult , Health Personnel/education , Delivery of Health Care/organization & administration , Primary Health Care/organization & administration , Primary Health Care/methods , Middle Aged
4.
Biol Reprod ; 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678504

The endoplasmic reticulum (ER) is a complex and dynamic organelle that initiates unfolded protein response (UPR) and endoplasmic reticulum stress (ER Stress) in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia (PE) and intrauterine growth retardation (IUGR) are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between ER Stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signalling pathways while excessive ER Stress triggers downstream apoptotic signalling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of PE and IUGR. In addition, this review will elucidate the molecular mechanisms of ER Stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in PE and IUGR development. This research seeks to the interplay between ER Stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.

5.
Laryngoscope ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686815

OBJECTIVES: We encountered patients with a congenital cutaneous sinus tract in the sternoclavicular joint region, which we designate as "congenital sternoclavicular sinus (CSCS)." The aim of this investigation is to enhance recognition of this subtle yet noteworthy entity and develop standardized protocols for its management. PATIENTS AND METHODS: Between 2013 and 2023, 172 patients, including 78 males and 94 females, were referred to our institution for the management of CSCS. Clinical charts were retrospectively reviewed. RESULTS: The majority of patients (60.5%) were young children below 3 years of age, with only six adult patients and a median age of 27.5 months. The left side was implicated in 157 cases (91.3%). In 146 cases (84.9%), a faint skin streak was noted above the orifice. Yet, no pharyngeal sinus tracts were detected, either through barium swallow studies or direct laryngoscopy. All skin lesions featured a diminutive orifice near the sternoclavicular joint, with the tract extending deeply into the subcutaneous tissue and terminating blindly, short of entering the joint, after a distance of 10 mm (ranging from 5 to 21 mm). Histopathological analysis revealed that the epithelial lining predominantly consisted of stratified squamous epithelium (87.8%), with ciliated columnar epithelium accounting for the remaining 12.2%. CONCLUSIONS: CSCS, though infrequent, presents with distinctive pathological and clinical features. The condition predominantly affects the left sternoclavicular joint region, with the notable "skin streak sign" aiding in diagnosis. We considered CSCS as one disease entity of branchial arch anomalies. Complete surgical excision offers a definitive cure. LEVEL OF EVIDENCE: 4 Laryngoscope, 2024.

6.
Sci Total Environ ; 928: 172322, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38604370

Forest soils are an important source of nitrous oxide (N2O), however, field observations of N2O emission have often exhibited large variabilities when compared with managed agricultural lands. In the last decade, the number of forest N2O studies has increased more than tenfold, but only a few of them have looked into the interannual flux variabilities from the regional scale. Here, we have collected 30 long-term N2O monitoring studies (≥ 2 years) based on a global database, and extracted variabilities (VARFlux) as well as relative variabilities (VAR%, in proportions) of annual N2O fluxes. The relationship of mean annual precipitation (MAP), mean annual temperature (MAT), and nitrogen (N) deposition with flux variabilities was examined to explore the underlying mechanisms for N2O emission on a long-term scale. Our results show that mean VARFlux is 0.43 kg N ha-1 yr-1 and VAR% is 28.68%. Across climatic zones, the subtropical forests have the largest annual N2O fluxes, as well as the largest fluctuations among annual budgets, while the tropics were the smallest. We found that the regulating factors for VARFlux and VAR% are fundamentally different, i.e., MAT and N input determine the annual fluxes as well as VARFlux while MAP and other limiting soil parameters determine VAR%. The relative contributions of different seasons to flux variabilities were also explored, indicating that N2O fluxes of warm and cool seasons are more responsible for the fluctuations in annual fluxes of the (sub)tropical and temperate forests, respectively. Overall, despite the limitation in interpretations due to few long-term studies from literature, this work highlights that significant interannual variabilities are common phenomena for N2O emission from different climatic zones forest soils; by unraveling the divergent drivers for VARFlux and VAR%, we have provided the possibility of improving N2O simulation models for constraining the heterogeneity of N2O emission processes from climatic zones forest soils.

7.
J Phys Condens Matter ; 36(30)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38588675

Modulating interlayer coupling modes can effectively enhance the thermoelectric properties of nanomaterials or nanoscale devices. By using density functional theory combined with non-equilibrium Green's function method, we investigate the thermoelectric properties of zigzag-type black arsenic nanoscale devices with varying interlayer coupling modes. Our results show that altering the interlayer coupling mode significantly modulates the thermoelectric properties of the system. Specifically, we consider four coupling modes with different strengths, by modulating different interlayer overlap patterns. Notably, in the weaker interlayer coupling mode, the system exhibits enhanced thermoelectric properties due to increased interface phonon scattering, for example, the M4reaching a peak value of 2.23 atµ= -0.73 eV. Furthermore, we explore the temperature-dependent behavior of each coupling model. The results suggest that the thermoelectric characteristics are more sensitive to temperature variations in the weaker coupling modes. These insights provide valuable guidance for enhancing the thermoelectric performance of nanoscale devices through precise interlayer coupling modulation.

8.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Article En | MEDLINE | ID: mdl-38618280

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Catechin , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Luteolin , Molecular Docking Simulation , Quercetin , MCF-7 Cells , ErbB Receptors/genetics
9.
Magn Reson Med ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649922

PURPOSE: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS: uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS: Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.

10.
Chem Soc Rev ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644694

Lithium-ion batteries (LIBs) are widely used as power storage systems in electronic devices and electric vehicles (EVs). Recycling of spent LIBs is of utmost importance from various perspectives including recovery of valuable metals (mostly Co and Li) and mitigation of environmental pollution. Recycling methods such as direct recycling, pyrometallurgy, hydrometallurgy, bio-hydrometallurgy (bioleaching) and electrometallurgy are generally used to resynthesise LIBs. These methods have their own benefits and drawbacks. This manuscript provides a critical review of recent advances in the recycling of spent LIBs, including the development of recycling processes, identification of the products obtained from recycling, and the effects of recycling methods on environmental burdens. Insights into chemical reactions, thermodynamics, kinetics, and the influence of operating parameters of each recycling technology are provided. The sustainability of recycling technologies (e.g., life cycle assessment and life cycle cost analysis) is critically evaluated. Finally, the existing challenges and future prospects are presented for further development of sustainable, highly efficient, and environmentally benign recycling of spent LIBs to contribute to the circular economy.

11.
Infection ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38568411

PURPOSE: To evaluate the efficacy and safety of oral ibrexafungerp (HS-10366) versus placebo in Chinese patients with vulvovaginal candidiasis (VVC). METHODS: A double-blind, placebo-controlled, randomized, multicenter phase III study was conducted in symptomatic VVC patients. Patients received (2:1) twice-daily oral ibrexafungerp 300 mg or matching placebo for 1 day. The primary endpoint was clinical cure (vulvovaginal signs and symptoms [VSS] score = 0) at test-of-cure (TOC) on day 11 ± 3. The secondary endpoints included mycological eradication, overall response, and clinical improvement (VSS score ≤ 1) at TOC, and vulvovaginal symptom resolution at follow-up on day 25 ± 4. RESULTS: In total, 360 patients were included in the modified intention-to-treat set (defined as positive Candida cultured and receiving at least one study drug; 239 for ibrexafungerp, 121 for placebo). Compared with placebo, patients receiving ibrexafungerp had a significantly higher proportion of clinical cure (51.0% vs. 25.6%), mycological eradication (55.6% vs. 18.2%), overall response (33.9%, vs. 8.3%) at TOC and complete symptom resolution (74.5% vs. 39.7%, all P < 0.001) at follow-up. Subgroup analysis of clinical cure indicated that patients with C. albicans could benefit from ibrexafungerp over placebo. A similar benefit trend was also observed in those with non-albicans Candida by post-hoc analysis. Further analyses revealed similar efficacy of ibrexafungerp between patients with fluconazole non-susceptible C. albicans and fluconazole susceptible C. albicans regarding clinical cure and mycological eradication. Ibrexafungerp was generally well tolerated. Adverse events were primarily gastrointestinal and were mainly mild in severity. CONCLUSIONS: As a first-in-class antifungal agent, ibrexafungerp demonstrated promising efficacy and favorable safety for VVC treatment in Chinese patients. CHINADRUGTRIALS.ORG. CN REGISTRY NUMBER: CTR20220918.

12.
Materials (Basel) ; 17(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673191

Different formulations of foaming polyurethane grout offer controlled expansion rates. This is crucial for precision in filling voids without exerting excessive pressure on surrounding structures, which could potentially cause damage. This study focuses on the impact of composition on the expansion performance of tailor-made polyurethane grouting materials. Initially, multiple unknown chemical reaction kinetic parameters were identified by combining free expansion tests, which involved measuring density and temperature changes, with the particle swarm optimization algorithm. A numerical simulation, integrating chemical kinetic models and fluid flow equations, was established to replicate the free expansion process of polyurethane grout in a cup, aligning with our experimental results. Subsequently, we analyzed the polymerization process of polyurethane grout with varying compositions to determine the effect of composition ratios on grout expansion. Our findings reveal that the expansion ratio of foaming polyurethane is predominantly influenced by the concentrations of physical and chemical foaming agents, followed by isocyanate concentration. Polyol, in contrast, exerts a relatively minor influence. Furthermore, the solubility of the physical foaming agent in the grout determines both its maximum allowable concentration and its maximum contribution to volume increase. This study provides valuable insights for the design and selection of polyurethane grout components tailored to diverse applications.

13.
Micromachines (Basel) ; 15(4)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38675318

Arterial stiffness has been proved to be an important parameter in the evaluation of cardiovascular diseases, and Pulse Wave Velocity (PWV) is a strong indicator of arterial stiffness. Compared to regional PWV (PWV among different arteries), local PWV (PWV within a single artery) outstands in providing higher precision in indicating arterial properties, as regional PWVs are highly affected by multiple parameters, e.g., variations in blood vessel lengths due to individual differences, and multiple reflection effects on the pulse waveform. However, local PWV is less-developed due to its high dependency on the temporal resolution in synchronized signals with usually low signal-to-noise ratios. This paper presents a method for the noninvasive simultaneous measurement of two local PWVs in both left and right radial arteries based on the Fiber Bragg Grating (FBG) technique via correlation analysis of the pulse pairs at the fossa cubitalis and at the wrist. Based on the measurements of five male volunteers at the ages of 19 to 21 years old, the average left radial PWV ranged from 9.44 m/s to 12.35 m/s and the average right radial PWV ranged from 11.50 m/s to 14.83 m/s. What is worth mentioning is that a stable difference between the left and right radial PWVs was observed for each volunteer, ranging from 2.27 m/s to 3.04 m/s. This method enables the dynamic analysis of local PWVs and analysis of their features among different arteries, which will benefit the diagnosis of early-stage arterial stiffening and may bring more insights into the diagnosis of cardiovascular diseases.

14.
Eur J Pharmacol ; 974: 176593, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38636800

Recent studies have highlighted the involvement of pyroptosis-mediated cell death and neuroinflammation in ischemic stroke (IS) pathogenesis. DL-3-n-butylphthalide (NBP), a synthesized compound based on an extract from seeds of Apium graveolens, possesses a broad range of biological effects. However, the efficacy and the underlying mechanisms of NBP in IS remain contentious. Herein, we investigated the therapeutic effects of NBP and elucidated its potential mechanisms in neuronal cell pyroptosis and microglia inflammatory responses. Adult male mice underwent permanent distal middle cerebral artery occlusion (dMCAO), followed by daily oral gavage of NBP (80 mg/kg) for 1, 7, or 21 consecutive days. Gene Expression Omnibus (GEO) dataset of IS patients peripheral blood RNA sequencing was analyzed to identify differentially expressed pyroptosis-related genes (PRGs) during the ischemic process. Our results suggested that NBP treatment effectively alleviated brain ischemic damage, resulting in decreased neurological deficit scores, reduced infarct volume, and improved neurological and behavioral functions. RNA sequence data from human unveiled upregulated PRGs in IS. Subsequently, we observed that NBP downregulated pyroptosis-associated markers at days 7 and 21 post-modeling, at both the protein and mRNA levels. Additionally, NBP suppressed the co-localization of pyroptosis markers with neuronal cells to variable degrees and simultaneously mitigated the accumulation of activated microglia. Overall, our data provide novel evidence that NBP treatment significantly attenuates ischemic brain damage and promotes recovery of neurological function in the early and recovery phases after IS, probably by negatively regulating the pyroptosis cell death of neuronal cells and inhibiting toxic neuroinflammation in the central nervous system.

15.
Medicine (Baltimore) ; 103(17): e34306, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669365

Low-grade serous ovarian carcinoma (LGSOC) is a rare subtype of ovarian cancer that accounts for approximately 6% to 10% of serous ovarian cancers. The clinical treatment of LGSOC is similar to that of high-grade serous ovarian carcinoma, however, its clinical and molecular characteristics are different from those of high-grade serous ovarian carcinoma. This article reviews the research on gene diagnosis, surgical treatment, chemotherapy, and biological therapy of LGSOC, providing reference for clinical diagnosis and treatment of LGSOC. Surgery is the cornerstone of LGSOC treatment and maximum effort must be made to achieve R0 removal. Although LGSOC is not sensitive to chemotherapy, postoperative platinum-based combination chemotherapy remains the first-line treatment option for LGSOC. Additional clinical trials are needed to confirm the clinical benefits of chemotherapy and explore new chemotherapy protocols. Hormone and targeted therapies may also play important roles. Some patients, particularly those with residual lesions after treatment, may benefit from hormone maintenance therapy after chemotherapy. Targeted therapies, such as MEKi, show good application prospects and are expected to change the treatment pattern of LGSOC. Continuing to further study the genomics of LGSOC, identify its specific gene changes, and combine traditional treatment methods with precision targeted therapy based on second-generation sequencing may be the direction for LGSOC to overcome the treatment bottleneck. In future clinical work, comprehensive genetic testing should be carried out for LGSOC patients to accumulate data for future scientific research, in order to find more effective methods and drugs for the treatment of LGSOC.


Cystadenocarcinoma, Serous , Ovarian Neoplasms , Precision Medicine , Humans , Female , Ovarian Neoplasms/therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Precision Medicine/methods , Cystadenocarcinoma, Serous/therapy , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/drug therapy , Molecular Targeted Therapy/methods , Neoplasm Grading , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
16.
Neurochem Int ; 176: 105728, 2024 Jun.
Article En | MEDLINE | ID: mdl-38561150

Protein arginine methyltransferase (PRMT) 2 catalyzes the methylation of arginine residues in histones. Depression is associated with histone methylation; however, more comprehensive research is needed on how PRMT2 regulates depression. The present study aimed to investigate the effects and possible mechanism(s) of PRMT2 overexpression on depression-like behavior induced by chronic unpredictable mild stress (CUMS) in rats, and whether lentivirus-mediated PRMT2 overexpression in the hippocampus suppresses depression-like behavior. Furthermore, the PRMT2 inhibitor MS023 was administered to the animals to investigate whether the antidepressant effect of PRMT2 overexpression could be reversed. Behavioral experiments were performed to detect depression-like behavior in rats. Western blotting was used to determine protein expression levels of PRMT2, histone H3R8 asymmetric dimethylation (H3R8me2a), inducible nitric oxide synthase (iNOS), and arginase 1 (Arg1) in rat hippocampal tissues. Hippocampal microglia and PRMT2 were stained using immunofluorescence techniques. Enzyme-linked immunosorbent assay was used to determine the levels of various inflammatory factors in rat hippocampal tissue. Results of analysis revealed that PRMT2 overexpression in the hippocampus exerted an antidepressant effect. PRMT2 overexpression in the hippocampus reduced the proportion of activated microglia in the hippocampus, upregulated Arg1 and H3R8me2a expression, and downregulated iNOS expression. PRMT2 overexpression in the hippocampus inhibited the release of pro-inflammatory factors and promoted the release of anti-inflammatory factors. In summary, PRMT2 overexpression in the hippocampus promoted the conversion of microglia from the M1 to M2 type, resulting in an antidepressant effect. These results suggest that PRMT2 may be a potential therapeutic target to prevent and treat depression.


Hippocampus , Protein-Arginine N-Methyltransferases , Rats, Sprague-Dawley , Animals , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/biosynthesis , Male , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Microglia/metabolism , Microglia/drug effects
17.
Medicine (Baltimore) ; 103(14): e37733, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38579058

BACKGROUND: The mechanisms underlying ovulatory dysfunction in PCOS remain debatable. This study aimed to identify the factors affecting ovulation among PCOS patients based on a large sample-sized randomized control trial. METHODS: Data were obtained from a multi-centered randomized clinical trial, the PCOSAct, which was conducted between 2011 and 2015. Univariate and multivariate analysis using binary logistic regression were used to construct a prediction model and nomogram. The accuracy of the model was assessed using receiver operating characteristic (ROC) curves and calibration curves. RESULTS: The predictive variables included in the training dataset model were luteinizing hormone (LH), free testosterone, body mass index (BMI), period times per year, and clomiphene treatment. The ROC curve for the model in the training dataset was 0.81 (95% CI [0.77, 0.85]), while in the validation dataset, it was 0.7801 (95% CI [0.72, 0.84]). The model showed good discrimination in both the training and validation datasets. Decision curve analysis demonstrated that the nomogram designed for ovulation had clinical utility and superior discriminative ability for predicting ovulation. CONCLUSIONS: The nomogram composed of LH, free testosterone, BMI, period times per year and the application of clomiphene may predict the ovulation among PCOS patients.


Nomograms , Polycystic Ovary Syndrome , Female , Humans , Clomiphene/therapeutic use , Luteinizing Hormone , Ovulation Prediction , Retrospective Studies , Testosterone , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
18.
Nat Neurosci ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594596

RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.

19.
Acta Pharmacol Sin ; 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491161

Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 µM) promoted wound healing and reduced cell apoptosis. NGR1 (100 µM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/ß-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/ß-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/ß-Catenin signaling pathway.

20.
Front Cell Infect Microbiol ; 14: 1291557, 2024.
Article En | MEDLINE | ID: mdl-38524179

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins serve as an adaptive immune system that safeguards prokaryotes and some of the viruses that infect prokaryotes from foreign nucleic acids (such as viruses and plasmids). The genomes of the majority of archaea and about half of all bacteria contain various CRISPR-Cas systems. CRISPR-Cas systems depend on CRISPR RNAs (crRNAs). They act as a navigation system to specifically cut and destroy foreign nucleic acids by recognizing invading foreign nucleic acids and binding Cas proteins. In this review, we provide a brief overview of the evolution and classification of the CRISPR-Cas system, focusing on the functions and applications of the CRISPR-Cas13a system. We describe the CRISPR-Cas13a system and discuss its RNA-directed ribonuclease function. Meanwhile, we briefly introduce the mechanism of action of the CRISPR-Cas13a system and summarize the applications of the CRISPR-Cas13a system in pathogen detection, eukaryotes, agriculture, biosensors, and human gene therapy. We are right understanding of CRISPR-Cas13a has been broadened, and the CRISPR-Cas13a system will be useful for developing new RNA targeting tools. Therefore, understanding the basic details of the structure, function, and biological characterization of CRISPR-Cas13a effector proteins is critical for optimizing RNA targeting tools.


Bacteria , Viruses , Humans , Archaea/genetics , RNA , CRISPR-Cas Systems , Viruses/genetics
...