Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.402
1.
Eur J Neurol ; : e16288, 2024 May 08.
Article En | MEDLINE | ID: mdl-38716763

BACKGROUND AND PURPOSE: The eye is a well-established model of brain structure and function, yet region-specific structural correlations between the retina and the brain remain underexplored. Therefore, we aim to explore and describe the relationships between the retinal layer thicknesses and brain magnetic resonance image (MRI)-derived phenotypes in UK Biobank. METHODS: Participants with both quality-controlled optical coherence tomography (OCT) and brain MRI were included in this study. Retinal sublayer thicknesses and total macular thickness were derived from OCT scans. Brain image-derived phenotypes (IDPs) of 153 cortical and subcortical regions were processed from MRI scans. We utilized multivariable linear regression models to examine the association between retinal thickness and brain regional volumes. All analyses were corrected for multiple testing and adjusted for confounders. RESULTS: Data from 6446 participants were included in this study. We identified significant associations between volumetric brain MRI measures of subregions in the occipital lobe (intracalcarine cortex), parietal lobe (postcentral gyrus), cerebellum (lobules VI, VIIb, VIIIa, VIIIb, and IX), and deep brain structures (thalamus, hippocampus, caudate, putamen, pallidum, and accumbens) and the thickness of the innermost retinal sublayers and total macular thickness (all p < 3.3 × 10-5). We did not observe statistically significant associations between brain IDPs and the thickness of the outer retinal sublayers. CONCLUSIONS: Thinner inner and total retinal thicknesses are associated with smaller volumes of specific brain regions. Notably, these relationships extend beyond anatomically established retina-brain connections.

2.
Front Pharmacol ; 15: 1360633, 2024.
Article En | MEDLINE | ID: mdl-38716236

Aims: This study aimed to synthesize the evidence of the comparative effectiveness and safety of Ophiocordyceps sinensis (OS) preparations combined with renin-angiotensin system inhibitors (RASi) for diabetic kidney disease (DKD). Methods: Eight databases were searched from their inception to May 2023. Systematic reviews (SRs) of OS preparations combined with RASi for DKD were identified. Randomized controlled trials (RCTs) from the included SRs and additional searching were performed for data pooling. Cochrane risk-of-bias 2 (RoB 2) tool and AMSTAR 2 were used to evaluate the methodological quality of RCTs and SRs, respectively. A Bayesian network meta-analysis was performed to compare the add-on effect and safety of OS preparations for DKD. The certainty of evidence was graded using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. Results: Fourteen SRs were included, whose methodological quality was assessed as high (1/14) or critically low (13/14). After combining additional searching, 157 RCTs were included, involving 13,143 participants. The quality of the RCTs showed some concerns (155/157) or high risk (2/157). Jinshuibao capsules and tablets, Bailing capsules and tablets, and Zhiling capsules were evaluated. Compared to RASi, adding either of the OS capsular preparations resulted in a decreased 24-h urinary total protein levels. OS preparations ranked differently in each outcome. Jinshuibao capsules plus RASi were beneficial in reducing urinary protein, serum creatinine, serum urea nitrogen, and blood glucose levels, with moderate-certainty evidence. No serious adverse events were observed after adding OS to RASi. Conclusion: Combining OS capsular preparations with RASi appeared to be associated with decreased urinary total protein levels in DKD patients. Further high-quality studies are needed to confirm. Systematic Review Registration: INPASY202350066.

3.
Int J Biol Macromol ; : 132290, 2024 May 23.
Article En | MEDLINE | ID: mdl-38795899

Polygonatum cyrtonema Hua (PC) with different processing degrees during the nine-steam-nine-bask processing was selected as the research object to investigate the changes of polysaccharide structure and their protective effect on cisplatin-induced acute kidney injury (AKI) in mice. The polysaccharides (PCP0, PCP4 and PCP9) were extracted, whose polysaccharide contents were 62.45 %, 60.34 % and 58.23 %, respectively. After processing, the apparent structure of PCPs became looser, and the apparent viscosity and the particle size were decreased. The PCPs were acidic polysaccharides containing pyran rings, and furan rings were present in PCP4 and PCP9. Besides, processing destroyed the original ß-glucoside bond in PCP0. PCPs were all composed of Rha, Man, Glu, Gal, Xyl and Ara with different ratio. In addition, AKI mice model was successfully constructed by single intraperitoneal injection of 15 mg/kg cisplatin. PC extracts (3.0750 g/kg) and PCP (0.1599 g/kg) significantly decreased the kidney function, liver function, and percentage of renal cell apoptosis, and improved the kidney structure of AKI mice (p < 0.05). PC and PCP have protective effect on cisplatin-induced AKI mice, and the protective effect was improved with the increase of processing degree. Under the same processing degree, the protective effect of PC mixed extract was better than that of PCP.

4.
Adv Mater ; : e2402871, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801111

Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis and immunomodulation. Moreover, the recent U.S. Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represent a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications. This article is protected by copyright. All rights reserved.

5.
Nucleic Acids Res ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38808672

Enrichment analysis, crucial for interpreting genomic, transcriptomic, and proteomic data, is expanding into metabolomics. Furthermore, there is a rising demand for integrated enrichment analysis that combines data from different studies and omics platforms, as seen in meta-analysis and multi-omics research. To address these growing needs, we have updated WebGestalt to include enrichment analysis capabilities for both metabolites and multiple input lists of analytes. We have also significantly increased analysis speed, revamped the user interface, and introduced new pathway visualizations to accommodate these updates. Notably, the adoption of a Rust backend reduced gene set enrichment analysis time by 95% from 270.64 to 12.41 s and network topology-based analysis by 89% from 159.59 to 17.31 s in our evaluation. This performance improvement is also accessible in both the R package and a newly introduced Python package. Additionally, we have updated the data in the WebGestalt database to reflect the current status of each source and have expanded our collection of pathways, networks, and gene signatures. The 2024 WebGestalt update represents a significant leap forward, offering new support for metabolomics, streamlined multi-omics analysis capabilities, and remarkable performance enhancements. Discover these updates and more at https://www.webgestalt.org.

6.
J Colloid Interface Sci ; 670: 272-278, 2024 May 16.
Article En | MEDLINE | ID: mdl-38763023

Exploring effective strategies for developing new high-efficiency catalysts for water splitting is essential for advancing hydrogen energy technology. Herein, Co3O4/RuO2 heterojunction interface is construct through ion exchange reaction and pyrolysis. The as-synthesized Co3O4/RuO2-4 exhibits outstanding oxygen evolution reaction (OER) activity at the current density of 100 mA cm-2 with a low overpotential of 276 mV, and remarkable stability (maintaining activity for 60 h at 100 mA cm-2). Experimental results and theoretical calculations reveal that the electrons around the heterogeneous interface transferred from RuO2 to Co3O4, resulting in electron redistribution and optimization of energy barriers for OER intermediates. This unique composite catalyst structure offers a new potential for designing efficient oxygen electrocatalysts at large current density.

7.
Plant Dis ; 2024 May 19.
Article En | MEDLINE | ID: mdl-38764338

Blue honeysuckle (Lonicera caerulea L.) cultivation has gradually expanded in China but continues to be limited by challenges such as leaf spot disease. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 30% of 'Lanjingling' blue honeysuckles grown in a 2.66 ha field (a total of about 11,000 plants) in Jiamusi city (130.47°E, 46.16°N), Heilongjiang Province, China. Affected plants displayed brown necrotic lesions on their leaves that gradually expanded in area until the leaves fell off the plant entirely. Small, 3 to 4 mm segments of infected tissue from 50 randomly selected leaves were surface sterilized with 75% ethanol for 30 s and 5% sodium hypochlorite (NaOCl) for 3 min, rinsed three times with sterile distilled water, dried on paper towels, and plated in 9 cm Petri dishes containing potato dextrose agar (PDA) (Yan et al. 2022). Five pathogens (LD-232, LD-233, LD-234, LD-235, and LD-236) were isolated on PDA and displayed a conidia morphology consistent with Pseudopithomyces spp. (Perelló et al. 2017). The fungal colonies on PDA were villiform, white, and whorled and had sparse aerial mycelium on the surface with black conidiomata. The conidia were obpyriform and dark brown, had 0 to 3 transverse and 0 to 1 longitudinal septa, and measured 9.00 to 15.30 µm × 5.70 to 9.30 µm in size (n = 50). Genomic DNA was extracted from a representative isolate, LD-232, for molecular verification and PCR amplification was performed with ITS1/ITS4 (White et al. 1990), LROR/LR7 (Carbone and Kohn 1999), and RPB2-5F2/RPB2-7CR (Liu et al. 1999) primers. Sequences of LD-232 ITS (OR835654), LSU (OR835652), and RPB2 (OR859769) revealed 99.8% (530/531 nt), 98.8% (639/647 nt), and 99.8% (1015/1017 nt) shared identity with Pseudopithomyces chartarum sequences (OP269600, OP237014, and MK434892), respectively (Wu et al. 2023). Bayesian inference (BI) was used to construct the phylogenies using Mr. Bayes v. 3.2.7 to confirm the identity of the isolates (Ariyawansa et al. 2015). Phylogenetic trees cannot be constructed based on the genes' concatenated sequences because selective strains do not have complete rDNA-ITS, LSU, and RPB2 sequences. Therefore, based on the morphological characteristics and molecular phylogeny, LD-232 was identified as P. chartarum (Perelló et al. 2017; Wu et al. 2023). A pathogenicity test was performed with six healthy, two-year-old 'Lanjingling' blue honeysuckle plants. Three plants were inoculated by spraying the LD-232 conidial suspension (1 × 106 spores/ml) or clean water as an experimental control condition (Wu et al. 2023; Yan et al. 2023). All plants were cultured in a greenhouse at 28℃ under a 12-h light/dark cycle, and each experiment was replicated three times. Typical leaf spot symptoms were observed on inoculated leaves after 10 days. The same pathogens were reisolated from infected leaves, displayed the same morphological and molecular traits, and were again identified as P. chartarum, confirming Koch's postulate. P. chartarum previously caused leaf spot disease on Tetrapanax papyrifer in China (Wu et al. 2023). To our knowledge, this is the first report of blue honeysuckle leaf spot caused by P. chartarum in China. Identification of P. chartarum as a disease agent on blue honeysuckle will help guide future management of leaf diseases for this economically important small fruit tree.

8.
J Affect Disord ; 359: 241-252, 2024 May 18.
Article En | MEDLINE | ID: mdl-38768820

BACKGROUND: Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS: We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanism studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS: We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS: L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types. CONCLUSION: Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.

9.
BMC Genomics ; 25(1): 506, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778290

Long non-coding RNAs (lncRNAs) are crucial modulators of post-transcriptional gene expression regulation, cell fate determination, and disease development. However, lncRNA functions during short-term heat stress in adult worker bees are poorly understood. Here, we performed deep sequencing and bioinformatic analyses of honeybee lncRNAs. RNA interference was performed by using siRNA targeting the most highly expressed lncRNA. The silencing effect on lncRNA and the relative expression levels of seven heat shock protein (HSP) genes, were subsequently examined. Overall, 7,842 lncRNAs and 115 differentially expressed lncRNAs (DELs) were identified in adult worker bees following heat stress exposure. Structural analysis revealed that the overall expression abundance, length of transcripts, exon number, and open reading frames of lncRNAs were lower than those of mRNAs. GO analysis revealed that the target genes were mainly involved in "metabolism," "protein folding," "response to stress," and "signal transduction" pathways. KEGG analysis indicated that the "protein processing in endoplasmic reticulum" and "longevity regulating pathway-multiple species" pathways were most enriched. Quantitative real-time polymerase chain reaction (qRT-PCR) detection of the selected DELs confirmed the reliability of the sequencing data. Moreover, the siRNA experiment indicated that feeding siRNA yielded a silencing efficiency of 77.51% for lncRNA MSTRG.9645.5. Upon silencing this lncRNA, the expression levels of three HSP genes were significantly downregulated (p < 0.05), whereas those of three other HSP genes were significantly upregulated (p < 0.05). Our results provide a new perspective for understanding the regulatory mechanisms of lncRNAs in adult worker bees under short-term heat stress.


Heat-Shock Response , RNA, Long Noncoding , Animals , Bees/genetics , Bees/physiology , RNA, Long Noncoding/genetics , Heat-Shock Response/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , RNA Interference , High-Throughput Nucleotide Sequencing , Computational Biology/methods
10.
Angew Chem Int Ed Engl ; : e202401707, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700007

The pursuit of high efficacy C-C coupling during the electrochemical CO2 reduction reaction remains a tremendous challenge owing to the high energy barrier of CO2 activation and insufficient coverage of the desired intermediates on catalytic sites. Inspired by the concept of capture-coupled CO2 activation, we fabricated quinone-grafted carbon nanofibers via an in situ oxidative carbonylation strategy. The quinone functionality of carbon nanofibers promotes the capture of CO2 followed by activation. At a current density of 400 mA cm-2, the Faradaic efficiency of ethylene reached 62.9%, and a partial current density of 295 mA cm-2 was achieved on the quinone-rich carbon nanofibers. The results of in situ spectroscopy and theoretical calculations indicated that the remarkable selectivity enhancement in ethylene originates from the quinone structure, rather than the electronic properties of Cu particles. The interaction of quinone with CO2 increases the local *CO coverage and simultaneously hinders the co-adsorption of *H on Cu sites, which greatly reduces the energy barrier for C-C coupling and restrains subsequent *CO protonation. The modulation strategy involving specific oxygenated structure, as an independent degree of freedom, guides the design of functionalized carbon materials for tailoring the selectivity of desired products during the CO2 capture and reduction.

11.
Sci Data ; 11(1): 453, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704376

Water body (WB) extraction is the basic work of water resources management. Tibetan Plateau is one of the largest alpine lake systems in the world. However, research on the characteristics of water bodies (WBs) is mainly focused on large and medium WBs due to spatial resolution. This research presents a dataset containing a 2-m resolution map of WBs in 2020 based on Gaofen-1 data, and morphometric and landscape indices of WBs across the Tibetan Plateau. The Swin-UNet model is well performed with overall accuracy at 98%. The total area of WBs is 56354.6 km2 across Tibetan Plateau in 2020. The abundance compared with that from size-abundance relationship indicate WBs in the Tibetan Plateau conformed to the classic power scaling law. We evaluate the influence of spatial-resolution in WB extraction, which shows the dataset could be valuable to fill the gap of existing WBs map, especially for small waters. The dataset is valuable for revealing the spatial patterns of WBs, and understanding the impacts of climate change on water resources in Plateau.

12.
Sci Data ; 11(1): 439, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698022

China, as the world's biggest soybean importer and fourth-largest producer, needs accurate mapping of its planting areas for global food supply stability. The challenge lies in gathering and collating ground survey data for different crops. We proposed a spatiotemporal migration method leveraging vegetation indices' temporal characteristics. This method uses a feature space of six integrals from the crops' phenological curves and a concavity-convexity index to distinguish soybean and non-soybean samples in cropland. Using a limited number of actual samples and our method, we extracted features from optical time-series images throughout the soybean growing season. The cloud and rain-affected data were supplemented with SAR data. We then used the random forest algorithm for classification. Consequently, we developed the 10-meter resolution ChinaSoybean10 maps for the ten primary soybean-producing provinces from 2019 to 2022. The map showed an overall accuracy of about 93%, aligning significantly with the statistical yearbook data, confirming its reliability. This research aids soybean growth monitoring, yield estimation, strategy development, resource management, and food scarcity mitigation, and promotes sustainable agriculture.


Crops, Agricultural , Glycine max , Crops, Agricultural/growth & development , China , Spatio-Temporal Analysis , Agriculture
13.
14.
Life (Basel) ; 14(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38792597

(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth's history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth's oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount of secondary astaxanthin under stresses. The two systems are controlled by lycopene ε-cyclase (LCYE) and ß-cyclase (LCYB), which leave an important trace in Earth's oxygenation. (2) Objectives: This work intends to disclose the underlying molecular evolutionary mechanism of Earth's oxygenation in shaping green algal carotenogensis with a special focus on lycopene cyclases. (3) Methods: The two kinds of cyclases were analyzed by site-directed mutagenesis, phylogeny, divergence time and functional divergence. (4) Results: Green lineage LCYEs appeared at ~1.5 Ga after the first significant appearance and accumulation of atmospheric oxygen, the so-called Great Oxygenation Event (GOE), from which LCYBs diverged by gene duplication. Bacterial ß-bicyclases evolved from ß-monocyclase. Enhanced catalytic activity accompanied evolutionary transformation from ε-/ß-monocyclase to ß-bicyclase. Strong positive selection occurred in green lineage LCYEs after the GOE and in algal LCYBs during the second oxidation, the Neoproterozoic Oxygenation Event (NOE). Positively selected sites in the catalytic cavities of the enzymes controlled the mono-/bicyclase activity, respectively. Carotenoid profiling revealed that oxidative adaptation has been wildly preserved in evolution. (5) Conclusions: the functionalization of the two enzymes is a result of primary to secondary adaptations to Earth's oxygenation.

15.
Gels ; 10(5)2024 May 07.
Article En | MEDLINE | ID: mdl-38786236

Hydrogels with adhesion properties and a wetted structure are promising alternatives to traditional wound dressing materials. The insufficiency of gelatin hydrogels in terms of their adhesive and mechanical strength limits their application in wound dressings. This work presents the design and preparation of a gelatin-based hydrogel functionalized with dopamine (DA) and layered double hydroxide (LDH). The combination of DA and LDH improves the hydrogel's adhesion properties in terms of interfacial adhesion and inner cohesion. Hydrogels with 8% DA and 4% LDH attained the highest adhesion strength of 266.5 kPa, which increased to 295.5 and 343.3 kPa after hydrophobically modifying the gelatin with octanoyl and decanoyl aldehydes, respectively. The gelatin-based hydrogels also demonstrated a macroporous structure, excellent biocompatibility, and a good anti-inflammatory effect. The developed hydrogels accelerated wound healing in Sprague Dawley rat skin full-thickness wound models.

16.
Microbiome ; 12(1): 96, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790063

BACKGROUND: The eukaryotic-bacterial symbiotic system plays an important role in various physiological, developmental, and evolutionary processes. However, our current understanding is largely limited to multicellular eukaryotes without adequate consideration of diverse unicellular protists, including ciliates. RESULTS: To investigate the bacterial profiles associated with unicellular organisms, we collected 246 ciliate samples spanning the entire Ciliophora phylum and conducted single-cell based metagenome sequencing. This effort has yielded the most extensive collection of bacteria linked to unicellular protists to date. From this dataset, we identified 883 bacterial species capable of cohabiting with ciliates, unveiling the genomes of 116 novel bacterial cohabitants along with 7 novel archaeal cohabitants. Highlighting the intimate relationship between ciliates and their cohabitants, our study unveiled that over 90% of ciliates coexist with bacteria, with individual hosts fostering symbiotic relationships with multiple bacteria concurrently, resulting in the observation of seven distinct symbiotic patterns among bacteria. Our exploration of symbiotic mechanisms revealed the impact of host digestion on the intracellular diversity of cohabitants. Additionally, we identified the presence of eukaryotic-like proteins in bacteria as a potential contributing factor to their resistance against host digestion, thereby expanding their potential host range. CONCLUSIONS: As the first large-scale analysis of prokaryotic associations with ciliate protists, this study provides a valuable resource for future research on eukaryotic-bacterial symbioses. Video Abstract.


Bacteria , Ciliophora , Symbiosis , Ciliophora/genetics , Ciliophora/classification , Ciliophora/physiology , Bacteria/genetics , Bacteria/classification , Archaea/genetics , Archaea/classification , Phylogeny , Metagenome , Biodiversity
17.
J Colloid Interface Sci ; 669: 258-264, 2024 Sep.
Article En | MEDLINE | ID: mdl-38718579

For ethylene purification, C2H6-selective metal-organic frameworks (MOFs) show great potential to directly produce polymer-grade C2H4 from C2H6/C2H4 mixtures. Most C2H6-traping MOFs are ultra-microporous structures so as to strengthen multiple supramolecular interactions with C2H6. However, the narrowed pore channels of C2H6-traping MOFs cause large guest diffusion barriers, greatly hampering their practical applications. Herein, we present a feasible strategy by precisely constructing hierarchically porous MOF@COF core-shell structures to address this issue. Additional mesoporous diffusion channels were incorporated between MOF crystals through the construction of the COF shell, thereby enhancing the gas adsorption kinetics. Notably, designing a core-shell MOF@COF structure with an optimal coating amount of mesoporous COF shell will further improve the gas diffusion rate. Breakthrough experiments reveal that the tailored MOF@COF composites can effectively achieve C2H6/C2H4 separation and maintain its separation performance over five continuous measurement cycles. This investigation opens up a new avenue to solve the diffusion/transfer issues and provides more opportunities and potentials for MOF@COF composites in practical separation applications.

18.
Stroke ; 55(6): 1592-1600, 2024 Jun.
Article En | MEDLINE | ID: mdl-38787930

BACKGROUND: Current evidence provides limited support for the superiority of endovascular thrombectomy (EVT) in patients with M2 segment middle cerebral artery occlusion. We aim to investigate whether imaging features of M2 segment occlusion impact the effectiveness of EVT. METHODS: We conducted a retrospective cohort study from January 2017 to January 2022, drawing data from the CASE II registry (Computer-Based Online Database of Acute Stroke Patients for Stroke Management Quality Evaluation), which specifically documented patients with acute ischemic stroke presenting with M2 segment occlusion undergoing reperfusion therapy. Patients were stratified into the intravenous thrombolysis (IVT) group (IVT alone) and EVT group (IVT plus EVT or EVT alone). The primary outcome was a modified Rankin Scale score 0 to 2 at 90 days. Secondary outcomes included additional thresholds and distribution of modified Rankin Scale scores, 24-hour recanalization, early neurological deterioration, and relevant complications during hospitalization. Safety outcomes encompassed intracranial hemorrhagic events at 24 hours and mortality at 90 days. Binary logistic regression analyses with propensity score matching were used. Subgroup analyses were performed based on the anatomic site of occlusion, including right versus left, proximal versus distal, dominant/co-dominant versus nondominant, single versus double/triple branch(es), and anterior versus central/posterior branch. RESULTS: Among 734 patients (43.3% were females; median age, 73 years) with M2 segment occlusion, 342 (46.6%) were in the EVT group. Propensity score matching analysis revealed no statistical difference in the primary outcome (odds ratio, 0.860 [95% CI, 0.611-1.209]; P=0.385) between the EVT group and IVT group. However, EVT was associated with a higher incidence of subarachnoid hemorrhage (odds ratio, 6.655 [95% CI, 1.487-29.788]; P=0.004) and pneumonia (odds ratio, 2.015 [95% CI, 1.364-2.977]; P<0.001). Subgroup analyses indicated that patients in the IVT group achieved better outcomes when presenting with right, distal, or nondominant branch occlusion (Pall interaction<0.05). CONCLUSIONS: Our study showed similar efficiency of EVT versus IVT alone in acute M2 segment middle cerebral artery occlusion. This suggested that only specific patient subpopulations might have a potentially higher benefit of EVT over IVT alone. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT04487340.


Infarction, Middle Cerebral Artery , Thrombectomy , Thrombolytic Therapy , Humans , Male , Female , Thrombectomy/methods , Aged , Infarction, Middle Cerebral Artery/surgery , Thrombolytic Therapy/methods , Middle Aged , Retrospective Studies , Treatment Outcome , Aged, 80 and over , Endovascular Procedures/methods , Registries , Ischemic Stroke/surgery , Ischemic Stroke/drug therapy , Ischemic Stroke/therapy
19.
Prev Med Rep ; 43: 102759, 2024 Jul.
Article En | MEDLINE | ID: mdl-38798909

Aims: To examine the concurrent validity of the Chinese version of Physical Activity Neighborhood Environment Scale (PANES-CHN) among urban adults in regional China. Methods: With multistage sampling approaches, 801 eligible urban adults aged 35-74 years were recruited from Nanjing municipality of China between July and September of 2019. The neighbourhood built environment features were measured subjectively with PANES-CHN and objectively with geographic information system. The concurrent validity of PANES was assessed using Spearman's correlations (rs). Results: Among the total 801 participants, the mean age was 54.4 (standard deviation = 11.5), while 48.7 % were men. Overall, of all the five objectively-measurable built environment characteristics, the Spearman correlations were examined significant between subjective and objective measurements for commercial facilities (item 2) (rs = 0.19, 95CI%=0.12, 0.25), recreational facilities (item 6) (rs = 0.10, 95CI%=0.02, 0.16), traffic junctions (item 12) (rs = 0.15, 95CI%=0.07, 0.22), medical/education facilities (item 17) (rs = 0.22, 95CI%=0.15, 0.29), but not for public transport stops. Similar scenarios were observed for participants aged 35-60 years, with sufficient physical activity, men or women. The rs value for medical/education facilities (item 17) was significantly higher in participants aged 35-59 years (0.28 vs. 0.13; p = 0.04) than those aged 60 + years. Conclusions: PANES-CHN generally has an acceptable validity for assessing built environment characteristics among urban adults in China, which implies that PANES-CHN can be used to measure built environment attributes in health-related population studies.

20.
Circulation ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38752340

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.

...