Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
aBIOTECH ; 5(1): 17-28, 2024 Mar.
Article En | MEDLINE | ID: mdl-38576436

Small RNA (sRNA)-mediated RNA silencing (also known as RNA interference, or RNAi) is a conserved mechanism in eukaryotes that includes RNA degradation, DNA methylation, heterochromatin formation and protein translation repression. In plants, sRNAs can move either cell-to-cell or systemically, thereby acting as mobile silencing signals to trigger noncell autonomous silencing. However, whether and what proteins are also involved in noncell autonomous silencing have not been elucidated. In this study, we utilized a previously reported inducible RNAi plant, PDSi, which can induce systemic silencing of the endogenous PDS gene, and we demonstrated that DCL3 is involved in systemic PDS silencing through its RNA binding activity. We confirmed that the C-terminus of DCL3, including the predicted RNA-binding domain, is capable of binding short RNAs. Mutations affecting RNA binding, but not processing activity, reduced systemic PDS silencing, indicating that DCL3 binding to RNAs is required for the induction of systemic silencing. Cucumber mosaic virus infection assays showed that the RNA-binding activity of DCL3 is required for antiviral RNAi in systemically noninoculated leaves. Our findings demonstrate that DCL3 acts as a signaling agent involved in noncell autonomous silencing and an antiviral effect in addition to its previously known function in the generation of 24-nucleotide sRNAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00124-6.

2.
aBIOTECH ; 5(1): 114, 2024 Mar.
Article En | MEDLINE | ID: mdl-38576432

[This corrects the article DOI: 10.1007/s42994-023-00124-6.].

3.
Nat Commun ; 14(1): 4844, 2023 08 10.
Article En | MEDLINE | ID: mdl-37563142

The soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, causes vascular wilts in a wide variety of economically important crops. The molecular mechanism of V. dahliae pathogenesis remains largely elusive. Here, we identify a small ubiquitin-like modifier (SUMO)-specific protease (VdUlpB) from V. dahliae, and find that VdUlpB facilitates V. dahliae virulence by deconjugating SUMO from V. dahliae enolase (VdEno). We identify five lysine residues (K96, K254, K259, K313 and K434) that mediate VdEno SUMOylation, and SUMOylated VdEno preferentially localized in nucleus where it functions as a transcription repressor to inhibit the expression of an effector VdSCP8. Importantly, VdUlpB mediates deSUMOylation of VdEno facilitates its cytoplasmic distribution, which allows it to function as a glycolytic enzyme. Our study reveals a sophisticated pathogenic mechanism of VdUlpB-mediated enolase deSUMOylation, which fortifies glycolytic pathway for growth and contributes to V. dahliae virulence through derepressing the expression of an effector.


Ascomycota , Verticillium , Virulence , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Plant Diseases/microbiology
4.
Nat Plants ; 9(9): 1409-1418, 2023 09.
Article En | MEDLINE | ID: mdl-37653339

Small RNA (sRNA)-mediated trans-kingdom RNA interference (RNAi) between host and pathogen has been demonstrated and utilized. However, interspecies RNAi in rhizospheric microorganisms remains elusive. In this study, we developed a microbe-induced gene silencing (MIGS) technology by using a rhizospheric beneficial fungus, Trichoderma harzianum, to exploit an RNAi engineering microbe and two soil-borne pathogenic fungi, Verticillium dahliae and Fusarium oxysporum, as RNAi recipients. We first detected the feasibility of MIGS in inducing GFP silencing in V. dahliae. Then by targeting a fungal essential gene, we further demonstrated the effectiveness of MIGS in inhibiting fungal growth and protecting dicotyledon cotton and monocotyledon rice plants against V. dahliae and F. oxysporum. We also showed steerable MIGS specificity based on a selected target sequence. Our data verify interspecies RNAi in rhizospheric fungi and the potential application of MIGS in crop protection. In addition, the in situ propagation of a rhizospheric beneficial microbe would be optimal in ensuring the stability and sustainability of sRNAs, avoiding the use of nanomaterials to carry chemically synthetic sRNAs. Our finding reveals that exploiting MIGS-based biofungicides would offer straightforward design and implementation, without the need of host genetic modification, in crop protection against phytopathogens.


Crop Protection , Gene Silencing , RNA Interference , Gene Editing , Genes, Fungal
5.
Front Plant Sci ; 13: 847086, 2022.
Article En | MEDLINE | ID: mdl-35519822

Bidirectional trans-kingdom RNA silencing [or RNA interference (RNAi)] plays a key role in plant-pathogen interactions. It has been shown that plant hosts export specific endogenous miRNAs into pathogens to inhibit their virulence, whereas pathogens deliver small RNAs (sRNAs) into plant cells to disturb host immunity. Here, we report a trans-kingdom fungal sRNA retarding host plant floral transition by targeting a miRNA precursor. From Arabidopsis plants infected with Verticillium dahliae, a soil-borne hemibiotrophic pathogenic fungus that causes wilt diseases in a wide range of plant hosts, we obtained a number of possible trans-kingdom V. dahliae sRNAs (VdsRNAs) by sequencing AGO1-immunoprecipitated sRNAs. Among these, a 24-nt VdsRNA derived from V. dahliae rRNA, VdrsR-1, was shown to be an actual trans-kingdom VdsRNA that targets the miR157d precursor MIR157d, resulting in increased rather than reduced miR157d accumulation in V. dahliae-infected plants. Consistent with the miR157 family in the regulation of vegetative and floral transitions by targeting SPL genes in several plant species, we detected two SPL genes, SPL13A/B, that were notably reduced in V. dahliae-infected and VdrsR-1-expressing plants compared with control plants. Furthermore, V. dahliae-infected and VdrsR-1-expressing plants also displayed delayed vegetative phase change and floral transition compared to control plants. Taken together, we disclosed a novel mode of action for a trans-kingdom fungal sRNA, VdrsR-1, which was secreted into host cells to modulate plant floral transition by employing the miR157d/SPL13A/B regulatory module, leading to prolonged host vegetative growth that would undoubtedly benefit fungal propagation.

6.
Nat Plants ; 5(11): 1167-1176, 2019 11.
Article En | MEDLINE | ID: mdl-31636399

Soil-borne fungal pathogens that cause crop disease are major threats to agriculture worldwide. Here, we identified a secretory polysaccharide deacetylase (PDA1) from the soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, that facilitates virulence through direct deacetylation of chitin oligomers whose N-acetyl group contributes to host lysine motif (LysM)-containing receptor perception for ligand-triggered immunity. Polysaccharide deacetylases are widely present in fungi, bacteria, insects and marine invertebrates and have been reported to possess diverse functions in developmental processes rather than virulence. A phylogenetics analysis of more than 5,000 fungal proteins with conserved polysaccharide deacetylase domains showed that the V. dahliae PDA1-containing subtree includes a large number of proteins from the Verticillium genus as well as the Fusarium genus, another group of characterized soil-borne fungal pathogens, suggesting that soil-borne fungal pathogens have adopted chitin deacetylation as a major virulence strategy. We showed that a Fusarium PDA1 is required for virulence in cotton plants. This study reveals a substantial virulence function role of polysaccharide deacetylases in pathogenic fungi and demonstrates a subtle mechanism whereby deacetylation of chitin oligomers converts them to ligand-inactive chitosan, representing a common strategy of preventing chitin-triggered host immunity by soil-borne fungal pathogens.


Amidohydrolases/metabolism , Chitin/metabolism , Gossypium/microbiology , Plant Diseases/microbiology , Soil Microbiology , Verticillium/pathogenicity , Acetylation , Amidohydrolases/genetics , Fusarium/enzymology , Fusarium/pathogenicity , Gossypium/metabolism , Solanum lycopersicum/metabolism , Verticillium/enzymology , Virulence
...