Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 260
1.
Animals (Basel) ; 14(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731354

The objective of this study was to investigate age-related changes in cashmere production and the population of active secondary hair follicles in cashmere goats across different age groups as well as to explore the association between secondary hair follicle activity and oxidative stress. A total of 104 adult Inner Mongolian ewe goats, aged between 2 and 7 years old, were randomly selected as experimental subjects. Skin samples were collected in August 2020 and cashmere samples were collected in April 2021. The cashmere fiber yield, staple length, and diameter showed age-related variations in cashmere goats aged 2 to 7 years (p < 0.05). Cashmere production was higher in goats aged 2-4 years compared to those aged 5-7 years (p < 0.05). There were no significant differences in the population of primary and secondary hair follicles among goats aged 2 to 7 years. However, the population of active secondary hair follicles varied significantly with age, with the younger group (aged 2-4 years) having a higher population than those aged 5-7 years (p < 0.05). A moderate negative correlation was observed between cashmere fiber diameter and the population of active secondary hair follicles (p < 0.05). Age-related variations in skin antioxidant capacity and oxidative damage were observed among cashmere goats aged 2 to 7 years old (p < 0.05). Goats aged 2 to 4 years exhibited higher antioxidant capacity and lower oxidative damage (p < 0.05). Interestingly, the skin's antioxidant capacity and oxidative damage exhibited significant positive and negative correlations with the population of active secondary hair follicles (p < 0.05). This study presents a novel approach to enhance the activity of secondary hair follicles and improve cashmere production performance through the regulation of oxidative stress.

2.
Mediators Inflamm ; 2024: 9078794, 2024.
Article En | MEDLINE | ID: mdl-38590775

Background: Acute pancreatitis (AP) is a clinically frequent acute abdominal condition, which refers to an inflammatory response syndrome of edema, bleeding, and even necrosis caused by abnormal activation of the pancreas's own digestive enzymes. Intestinal damage can occur early in the course of AP and is manifested by impaired intestinal mucosal barrier function, and inflammatory reactions of the intestinal mucosa, among other factors. It can cause translocation of intestinal bacteria and endotoxins, further aggravating the condition of AP. Therefore, actively protecting the intestinal mucosal barrier, controlling the progression of intestinal inflammation, and improving intestinal dynamics in the early stages of AP play an important role in enhancing the prognosis of AP. Methods: The viability and apoptosis of RAW264.7 cells treated with Esculentoside A (EsA) and/or lipopolysaccharide were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB signaling pathway-related proteins were detected by western blot (WB). An enzyme-linked immunosorbent assay was used to measure TNF-α and IL-6 secretion. Results: In vitro experiments demonstrated that EsA not only promoted the apoptosis of inflammatory cells but also reduced the secretion of TNF-α and IL-6 in a dose-dependent manner. Additionally, it inhibited the activation of the NF-κB signaling pathway by decreasing the expression of phosphorylated-p65(p-p65) and elevating the expression of IκBα. Similarly, in vivo experiments using a rat AP model showed that EsA inhibited the expression of p-p65 elevating the expression of IκBα in the intestinal tissues of the rat AP model and promoting the apoptosis of inflammatory cells in the intestinal mucosa in vivo experiments, while improving the pathological outcome of the pancreatic and intestinal tissues. Conclusion: Our results suggest that EsA can reduce intestinal inflammation in the rat AP model and that EsA may be a candidate for treating intestinal inflammation in AP and further arresting AP progression.


NF-kappa B , Oleanolic Acid/analogs & derivatives , Pancreatitis , Saponins , Rats , Animals , NF-kappa B/metabolism , Pancreatitis/metabolism , NF-KappaB Inhibitor alpha , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Acute Disease , Inflammation/drug therapy
3.
Animals (Basel) ; 14(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612237

The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-ß, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.

4.
Cell Prolif ; : e13631, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38453465

Human induced pluripotent stem cell (hiPSC)-derived cardiac organoids (COs) have shown great potential in modelling human heart development and cardiovascular diseases, a leading cause of global death. However, several limitations such as low reproducibility, limited vascularization and difficulty in formation of cardiac chamber were yet to be overcome. We established a new method for robust generation of COs, via combination of methodologies of hiPSC-derived vascular spheres and directly differentiated cardiomyocytes from hiPSCs, and investigated the potential application of human COs in cardiac injury modelling and drug evaluation. The human COs we built displayed a vascularized and chamber-like structure, and hence were named vaschamcardioids (vcCOs). These vcCOs exhibited approximately 90% spontaneous beating ratio. Single-cell transcriptomics identified a total of six cell types in the vcCOs, including cardiomyocytes, cardiac precursor cells, endothelial cells, fibroblasts, etc. We successfully recaptured the processes of cardiac injury and fibrosis in vivo on vcCOs, and showed that the FDA-approved medication captopril significantly attenuated cardiac injury-induced fibrosis and functional disorders. In addition, the human vcCOs exhibited an obvious drug toxicity reaction to doxorubicin in a dose-dependent manner. We developed a three-step method for robust generation of chamber-like and vascularized complex vcCOs, and our data suggested that vcCOs might become a useful model for understanding pathophysiological mechanisms of cardiovascular diseases, developing intervention strategies and screening drugs.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124064, 2024 May 05.
Article En | MEDLINE | ID: mdl-38428215

As two of important highly reactive species / nitrogen species, hypochloric acid (HClO) and peroxynitrite (ONOO-) are involved in various pathological and physiological processes, which are important factors that affect and reflect the functional state of lysosome. Nevertheless, many of their roles are still indefinite because of lack of suitable analytical methods for HClO and ONOO- detection in lysosome. Herein, we designed a lysosome-targeted probe to monitor HClO and ONOO-, which was a hydrid of the benzothiazole derivative, methyl thioether (HClO recognition site) and morpholino hydrazone (ONOO- recognition and lysosome target site). The probe exhibited high sensitivity, good selectivity and fast response toward HClO and ONOO- without spectral crosstalk, and can be employed for quantitative monitoring HClO and ONOO- with LOD of 63 and 83 nM, respectively. In addition, the dual-site probe was lysosome targetable and could be used for detection of HClO and ONOO- in living cells. Furthermore, the excellent behavior made it was suitable for imaging of HClO and ONOO- in zebrafish. Thus, the present probe provides a potent tool for distinguishing monitoring HClO and ONOO- and exploring the role of HClO and ONOO- in biological systems.


Fluorescent Dyes , Zebrafish , Humans , Animals , Lysosomes , Peroxynitrous Acid , HeLa Cells , Hypochlorous Acid
7.
Sci Rep ; 14(1): 5709, 2024 03 08.
Article En | MEDLINE | ID: mdl-38459090

There is increasing evidence of abnormal neurodevelopmental outcomes in preterm infants with low-grade intraventricular hemorrhage (IVH). The purpose of the study was to explore whether brain microstructure and volume are associated with neuro-behavioral outcomes at 40 weeks corrected gestational age in preterm infants with low-grade IVH. MR imaging at term-equivalent age (TEA) was performed in 25 preterm infants with mild IVH (Papile grading I/II) and 40 control subjects without IVH. These subjects all had neonatal behavioral neurological assessment (NBNA) at 40 weeks' corrected age. Microstructure and volume evaluation of the brain were performed by using diffusion kurtosis imaging (DKI) and Synthetic MRI. Correlations among microstructure parameters, volume, and developmental outcomes were explored by using Spearman's correlation. In preterm infants with low-grade IVH, the volume of brain parenchymal fraction (BPF) was reduced. In addition, mean kurtosis (MK), fractional anisotropy (FA), radial kurtosis (RK), axial kurtosis (AK) in several major brain regions were reduced, while mean diffusivity (MD) was increased (P < 0.05). BPF, RK in the cerebellum, MK in the genu of the corpus callosum, and MK in the thalamus of preterm infants with low-grade IVH were associated with lower NBNA scores (r = 0.831, 0.836, 0.728, 0.772, P < 0.05). DKI and Synthetic MRI can quantitatively evaluate the microstructure alterations and brain volumes in preterm infants with low-grade IVH, which provides clinicians with a more comprehensive and accurate neurobehavioral assessment of preterm infants with low-grade IVH.


Infant, Premature, Diseases , Infant, Premature , Infant , Humans , Infant, Newborn , Brain/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/complications , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging , Infant, Premature, Diseases/diagnostic imaging
8.
Pediatr Radiol ; 54(5): 776-786, 2024 May.
Article En | MEDLINE | ID: mdl-38321237

BACKGROUND: Intraventricular haemorrhage (IVH) often arises as a cerebral complication directly related to preterm birth. The impaired autoregulation of cerebral blood flow is closely associated with IVH in preterm neonates. Three-dimensional pseudo-continuous arterial spin labelling (3D-pCASL) is a noninvasive magnetic resonance imaging (MRI) technique used for evaluating cerebral perfusion. OBJECTIVE: This study aimed to compare cerebral blood flow values among three distinct groups using 3D-pCASL: preterm neonates with and without IVH and preterm neonates at term-equivalent age. MATERIALS AND METHODS: A total of 101 preterm neonates who underwent conventional MRI and 3D-pCASL were included in this study. These neonates were categorised into three groups: 12 preterm neonates with IVH, 52 preterm neonates without IVH, and 37 healthy neonates at term-equivalent age. Cerebral blood flow measurements were obtained from six brain regions of interest (ROIs)-the frontal lobe, temporal lobe, parietal lobe, occipital lobe, basal ganglia, and thalamus-in the right and left hemispheres. RESULTS: The cerebral blood flow values measured in all ROIs of preterm neonates with IVH were significantly lower than those of neonates at term-equivalent age (all P<0.05). Additionally, the cerebral blood flow in the temporal lobe was lower in preterm neonates without IVH than in neonates at term-equivalent age (16.87±5.01 vs. 19.76±5.47 ml/100 g/min, P=0.012). Furthermore, a noteworthy positive correlation was observed between post-menstrual age and cerebral blood flow in the temporal lobe (P=0.037), basal ganglia (P=0.010), and thalamus (P=0.010). CONCLUSION: The quantitative cerebral blood flow values, as measured by 3D-pCASL, highlighted that preterm neonates with IVH had decreased cerebral perfusion. This finding underscores the potential of 3D-pCASL as a technique for evaluating the developmental aspects of the brain in preterm neonates.


Cerebrovascular Circulation , Imaging, Three-Dimensional , Infant, Premature , Spin Labels , Humans , Infant, Newborn , Male , Female , Cerebrovascular Circulation/physiology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Infant, Premature, Diseases/diagnostic imaging , Infant, Premature, Diseases/physiopathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/physiopathology
9.
Adv Sci (Weinh) ; 11(13): e2306685, 2024 Apr.
Article En | MEDLINE | ID: mdl-38286660

Chronic adipose tissue inflammation accompanied by macrophage accumulation and activation is implicated in the pathogenesis of insulin resistance and type 2 diabetes in humans. The transcriptional coregulator CREBZF is a key factor in hepatic metabolism, yet its role in modulating adipose tissue inflammation and type 2 diabetes remains elusive. The present study demonstrates that overnutrition-induced CREBZF links adipose tissue macrophage (ATM) proinflammatory activation to insulin resistance. CREBZF deficiency in macrophages, not in neutrophils, attenuates macrophage infiltration in adipose, proinflammatory activation, and hyperglycemia in diet-induced insulin-resistant mice. The coculture assays show that macrophage CREBZF deficiency improves insulin sensitivity in primary adipocytes and adipose tissue. Mechanistically, CREBZF competitively inhibits the binding of IκBα to p65, resulting in enhanced NF-κB activity. In addition, bromocriptine is identified as a small molecule inhibitor of CREBZF in macrophages, which suppresses the proinflammatory phenotype and improves metabolic dysfunction. Furthermore, CREBZF is highly expressed in ATM of obese humans and mice, which is positively correlated with proinflammatory genes and insulin resistance in humans. This study identifies a previously unknown role of CREBZF coupling ATM activation to systemic insulin resistance and type 2 diabetes.


Basic-Leucine Zipper Transcription Factors , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Humans , Mice , Adipose Tissue/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Diabetes Mellitus, Type 2/metabolism , Inflammation/metabolism , Insulin Resistance/genetics , Macrophages/metabolism , Obesity/metabolism
11.
Opt Express ; 31(24): 40781-40791, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-38041370

We demonstrate the generation of both continuous-wave (CW) and Q-switched cylindrical vector beams (CVBs) from a mid-infrared Er3+-doped ZBLAN (Er:ZBLAN) fiber laser at ∼ 2.8 µm. A customized S-waveplate is incorporated as the intracavity mode converter to achieve the mid-infrared CVBs. Switchable modes of CVBs between the radially and azimuthally polarized beam can be realized easily by manipulating the cavity conditions. A maximum output power of ∼250 mW is achieved for the CW CVBs. In the short-pulsed CVBs operation regime, both the active and passive Q-switching modes are realized with a pulse duration of hundreds of nanoseconds. The proposed mid-infrared cylindrical vector lasers can have significant potential for applications in biomedicine, optical trapping, material processing and optical communication.

12.
J Nanobiotechnology ; 21(1): 465, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38049882

Breast cancer treatment has been a global puzzle, and apoptosis strategies based on mitochondrial Ca2+ overload have attracted extensive attention. However, various limitations of current Ca2+ nanogenerators make it difficult to maintain effective Ca2+ overload concentrations. Here, we constructed a multimodal Ca2+ nano-modulator that, for the first time, combined photothermal therapy (PTT) and mitochondrial Ca2+ overload strategies to inhibit tumor development. By crosslinking sodium alginate (SA) on the surface of calcium carbonate (CaCO3) nanoparticles encapsulating with Cur and ICG, we prepared a synergistic Ca2+ nano-regulator SA/Cur@CaCO3-ICG (SCCI). In vitro studies have shown that SCCI further enhanced photostability while preserving the optical properties of ICG. After uptake by tumor cells, SCCI can reduce mitochondrial membrane potential and down-regulate ATP production by producing large amounts of Ca2+ at low pH. Near-infrared light radiation (NIR) laser irradiation made the tumor cells heat up sharply, which not only accelerated the decomposition of CaCO3, but also produced large amounts of reactive oxygen species (ROS) followed by cell apoptosis. In vivo studies have revealed that the Ca2+ nano-regulators had excellent targeting, biocompatibility, and anti-tumor effects, which can significantly inhibit the proliferation of tumor cells and play a direct killing effect. These findings indicated that therapeutic strategies based on ionic interference and PTT had great therapeutic potential, providing new insights into antitumor therapy.


Breast Neoplasms , Nanoparticles , Photochemotherapy , Humans , Female , Breast Neoplasms/therapy , Indocyanine Green/chemistry , Phototherapy , Nanoparticles/chemistry , Homeostasis , Cell Line, Tumor
13.
Animals (Basel) ; 13(22)2023 Nov 14.
Article En | MEDLINE | ID: mdl-38003137

The objective of this study was to investigate the effects of fasted live-weight gain during the cashmere non-growing period on cashmere production performance and secondary hair follicle activity, to provide a theoretical basis for appropriate supplementary feeding of cashmere goats. Fifty Inner Mongolian cashmere goats aged 2-4 years old were randomly selected and weighed in May and September 2019, respectively. Based on fasted live-weight gain between the two weights, the experimental ewe goats were divided into two groups: 0-5.0 kg group (n = 30) and 5.0-10.0 kg group (n = 20). Skin samples and cashmere samples were collected. Results of a Pearson correlation analysis showed that fasted live-weight gain during the cashmere non-growing period had a moderate and strong positive correlation with cashmere yield (p = 0.021) and cashmere staple length (p = 0.002), respectively, but did not correlate with cashmere diameter (p = 0.254). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had a 17.10% increase in cashmere yield (p = 0.037) and an 8.09% increase in cashmere staple length (p = 0.045), but had no significant difference in cashmere diameter (p = 0.324). Results of a Pearson correlation analysis showed that there was a strong positive correlation between fasted live-weight gain and the population of active secondary hair follicles in the skin of cashmere goats (p < 0.01). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had an increase in the population of active secondary hair follicles (p < 0.05). In conclusion, the fasted live-weight gain during the cashmere non-growing period had a significant effect on secondary hair follicle activity and cashmere production performance in cashmere goats. Since fasted live-weight gain reflects nutritional level to a certain extent, this study suggests that nutritional manipulations such as supplementary feeding during cashmere non-growing periods can increase cashmere production performance. However, specific nutritional manipulations during the cashmere non-growing period need further research to increase cashmere production performance.

14.
Aging (Albany NY) ; 15(22): 13384-13410, 2023 11 27.
Article En | MEDLINE | ID: mdl-38015723

A ketogenic diet (KD) and ß-hydroxybutyrate (ßOHB) have been widely reported as effective therapies for metabolic diseases. ß-Hydroxybutyrate dehydrogenase 1 (BDH1) is the rate-limiting enzyme in ketone metabolism. In this study, we examined the BDH1-mediated ßOHB metabolic pathway in the pathogenesis of diabetic kidney disease (DKD). We found that BDH1 is downregulated in the kidneys in DKD mouse models, patients with diabetes, and high glucose- or palmitic acid-induced human renal tubular epithelial (HK-2) cells. BDH1 overexpression or ßOHB treatment protects HK-2 cells from glucotoxicity and lipotoxicity by inhibiting reactive oxygen species overproduction. Mechanistically, BDH1-mediated ßOHB metabolism activates NRF2 by enhancing the metabolic flux of ßOHB-acetoacetate-succinate-fumarate. Moreover, in vivo studies showed that adeno-associated virus 9-mediated BDH1 renal expression successfully reverses fibrosis, inflammation, and apoptosis in the kidneys of C57 BKS db/db mice. Either ßOHB supplementation or KD feeding could elevate the renal expression of BDH1 and reverse the progression of DKD. Our results revealed a BDH1-mediated molecular mechanism in the pathogenesis of DKD and identified BDH1 as a potential therapeutic target for DKD.


Diabetes Mellitus , Diabetic Nephropathies , Animals , Humans , Mice , 3-Hydroxybutyric Acid/pharmacology , Antioxidants/therapeutic use , Diabetic Nephropathies/metabolism , Kidney/pathology , NF-E2-Related Factor 2/genetics , Hydroxybutyrate Dehydrogenase/metabolism
15.
Eur J Pharmacol ; 959: 176084, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37806540

Vascular calcification (VC) is associated with increased morbidity and mortality, especially among people with type 2 diabetes mellitus (T2DM). The pathogenesis of vascular calcification is incompletely understood, and until now, there have been no effective therapeutics for vascular calcification. The L-type calcium ion channel in the cell membrane is vital for Ca2+ influx. The effect of L-type calcium ion channels on autophagy remains to be elucidated. Here, the natural compound thonningianin A (TA) was found to ameliorate vascular calcification in T2DM via the activation of L-type calcium ion channels. The results showed that TA had a concentration-dependent ability to decrease the transcriptional and translational expression of the calcification-related proteins runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteopontin (OPN) (P < 0.01) via ATG7-dependent autophagy in ß-glycerophosphate (ß-GP)- and high glucose (HG)-stimulated primary mouse aortic smooth muscle cells (MASMCs) and alleviate aortic vascular calcification in VitD3-stimulated T2DM mice. However, nifedipine, an inhibitor of L-type calcium ion channels, reversed TA-induced autophagy and Ca2+ influx in MASMCs. Molecular docking analysis revealed that TA was located in the hydrophobic pocket of Cav1.2 α1C and was mainly composed of the residues Ile, Phe, Ala and Met, which confirmed the efficacy of TA in targeting the L-type calcium channel of Cav1.2 on the cell membrane. Moreover, in an in vivo model of vascular calcification in T2DM mice, nifedipine reversed the protective effects of TA on aortic calcification and the expression of the calcification-related proteins RUNX2, BMP2 and OPN (P < 0.01). Collectively, the present results reveal that the activation of cell membrane L-type calcium ion channels can induce autophagy and ameliorate vascular calcification in T2DM. Thonningianin A (TA) can target and act as a potent activator of L-type calcium ion channels. Thus, this research revealed a novel mechanism for autophagy induction via L-type calcium ion channels and provided a potential therapeutic for vascular calcification in T2DM.


Diabetes Mellitus, Type 2 , Vascular Calcification , Humans , Mice , Animals , Calcium Channels, L-Type/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Muscle, Smooth, Vascular , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Molecular Docking Simulation , Nifedipine/pharmacology , Nifedipine/therapeutic use , Vascular Calcification/etiology , Vascular Calcification/chemically induced , Autophagy , Myocytes, Smooth Muscle , Calcium/metabolism , Cells, Cultured
16.
Sci Rep ; 13(1): 16611, 2023 10 03.
Article En | MEDLINE | ID: mdl-37789092

Esketamine provides an immediate and noticeable antidepressant effect, although the underlying molecular processes are yet unclear. Irisin induced by aerobic exercise has been implicated in the alleviation of depressive symptoms, whether irisin expression responds to the administration of esketamine remains unknown. In this study, we found that irisin was reduced in the hippocampus and peripheral blood of chronic unpredictable mild stress (CUMS) mice, whereas the irisin level was rescued by esketamine treatment. The reduction of PGC-1α expression (transcriptional regulator of irisin gene expression) in the CUMS mice was rescued by esketamine treatment, PGC-1α knockdown significantly reduced the irisin level induced by esketamine. Additionally, FNDC5/irisin-knockout mice developed more severe depressant-like behaviors than wild-type mice under CUMS stimulation, with an attenuated the antidepressant effect of esketamine. Further research indicated that irisin-mediated modulation of esketamine on depressive-like behaviors in CUMS mice involved the ERK1/2 pathway. Overall, the PGC-1α/irisin/ERK1/2 signaling activation may be a new mechanism underlying the antidepressant activity of esketamine, denoting that irisin may be a promising therapeutic target for the treatment of depression.


Antidepressive Agents , Depression , Fibronectins , Animals , Mice , Antidepressive Agents/pharmacology , Depression/drug therapy , Fibronectins/metabolism , Hippocampus/metabolism , MAP Kinase Signaling System , Mice, Knockout , Muscle, Skeletal/metabolism
17.
Quant Imaging Med Surg ; 13(10): 6412-6423, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37869353

Background: Preterm infants with necrotizing enterocolitis (NEC) are at high risk of adverse neurodevelopmental outcomes. The aim of this study was to explore the value of diffusion tensor imaging (DTI) combined with serum C-reactive protein (CRP) and procalcitonin (PCT) in evaluating alterations of white matter (WM) microstructure in preterm infants with NEC. Methods: A retrospective cross-sectional study was conducted in which all participants were consecutively enrolled at The Third Affiliated Hospital of Zhengzhou University from June 2017 and October 2021. Data from 30 preterm infants with NEC [mean gestational age at birth 31.41±1.15 weeks; mean age at magnetic resonance imaging (MRI) 37.53±3.08 weeks] and 40 healthy preterm infants with no NEC were recorded (mean gestational age at birth 32.27±2.09 weeks; mean age at MRI 37.15±3.23 weeks). WM was used to obtain the fractional anisotropy (FA) and mean diffusivity (MD) values of the regions of interest (ROIs). Additionally, serum levels of CRP and PCT were determined. Spearman correlation analysis was performed between the WM-derived parameters, CRP level, and the PCT serum index. Results: Preterm infants with NEC had reduced FA values and elevated MD values in WM regions [posterior limbs of the internal capsule (PLIC), lentiform nucleus (LN), frontal white matter (FWM)] compared to the control group (P<0.05). Additionally, the FA of the PLIC was negatively correlated with serum CRP (r=-0.846; P<0.05) and PCT (r=-0.843; P<0.05). Meanwhile, the MD of PLIC was positively correlated with serum CRP (r=0.743; P<0.05) and PCT (r=0.743; P<0.05, respectively). The area under the curve (AUC) of FA and MD combined with CRP and PCT in the diagnosis of WM microstructure alterations with NEC was 0.968, representing a considerable improvement in predicted efficacy over single indicators, including FA [AUC: 0.938; 95% confidence interval (CI): 0.840-0.950], MD (AUC: 0.807; 95% CI: 0.722-0.838), CRP (AUC: 0.867; 95% CI: 0.822-0.889), and PCT (AUC: 0.706; 95% CI: 0.701-0.758). Conclusions: WM can noninvasively and quantitatively assess the WM microstructure alterations in preterm infants with NEC. WM combined with serum CRP and PCT demonstrated superior performance in detecting and evaluating WM microstructure alterations in preterm infants with NEC.

18.
Arch Biochem Biophys ; 747: 109755, 2023 10 01.
Article En | MEDLINE | ID: mdl-37714252

Vascular endothelial dysfunction is the initial step in atherosclerosis (AS). AS tends to occur at vascular bifurcations and curves, and endothelial cells(ECs) are highly susceptible to injury due to mechanical forces induced by disturbed flow (DF) with inconsistent blood flow directions. However, the pathogenesis of endothelial cell dysfunction in AS remains unclear and needs further study. Here, we found that Piezo1 expression was significantly increased in DF- and oxidized low-density lipoprotein(ox-LDL)-treated HUVECs in vitro and a model of atherosclerotic plaque growth in ApoE-/- mice fed a Western diet. Furthermore, Piezo1 upregulated autophagy levels in the HUVECs model, which was reversed by Piezo1 knockdown with a lentivirus-mediated shRNA system. Mechanistically, the level of Yes-associated protein (YAP), a transcriptional coactivator in the Hippo pathway, was significantly elevated in the DF- and ox-LDL-induced HUVECs model, and this effect was further inhibited by Piezo1 knockdown. Moreover, the Piezo1 agonist Yoda1 inhibited the protein level of microtubule-associated protein 1 light chain 3-II(LC3-II) and increased the protein level of sequestosome1(p62/SQSTM1) in a dose-dependent manner, while significantly promoting the protein expression and nuclear translocation of YAP. The YAP inhibitor CA3 weakened Yoda1-mediated inhibition of autophagy. Our results suggest that Piezo1 may regulate endothelial autophagy by promoting YAP activation and nuclear translocation, thereby contributing to vascular endothelial dysfunction.


Atherosclerosis , Plaque, Atherosclerotic , Animals , Humans , Mice , Atherosclerosis/metabolism , Autophagy , Human Umbilical Vein Endothelial Cells/pathology , Ion Channels/genetics , Ion Channels/metabolism , Lipoproteins, LDL/metabolism , Signal Transduction , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism
19.
Cell Commun Signal ; 21(1): 202, 2023 08 14.
Article En | MEDLINE | ID: mdl-37580705

Acute myocardial infarction has long been the leading cause of death in coronary heart disease, which is characterized by irreversible cardiomyocyte death and restricted blood supply. Conventional reperfusion therapy can further aggravate myocardial injury. Stem cell therapy, especially with mesenchymal stem cells (MSCs), has emerged as a promising approach to promote cardiac repair and improve cardiac function. MSCs may induce these effects by secreting exosomes containing therapeutically active RNA, proteins and lipids. Notably, normal cardiac function depends on intracardiac paracrine signaling via exosomes, and exosomes secreted by cardiac cells can partially reflect changes in the heart during disease, so analyzing these vesicles may provide valuable insights into the pathology of myocardial infarction as well as guide the development of new treatments. The present review examines how exosomes produced by MSCs and cardiac cells may influence injury after myocardial infarction and serve as therapies against such injury. Video Abstract.


Exosomes , Mesenchymal Stem Cells , Myocardial Infarction , Humans , Exosomes/metabolism , Apoptosis , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Mesenchymal Stem Cells/metabolism
20.
Front Microbiol ; 14: 1190348, 2023.
Article En | MEDLINE | ID: mdl-37396393

Recently, the relationship between the goat host and its gastrointestinal microbiome has emerged as a hallmark of host-microbiota symbiosis, which was indispensable for the proper physiological function that convert the plant biomass to livestock products. However, little integrative information about the establishment of gastrointestinal microflora in goats exists. Herein, we characterized the colonizing process of the bacterial community in the digesta and mucosa of the rumen, cecum, and colon of the cashmere goat from birth to adulthood to compare its spatiotemporal difference via 16S rRNA gene sequencing. A total of 1,003 genera belonging to 43 phyla were identified. Principal coordinate analysis unveiled the similarity of microbial community between or within each age group increased and gradually developed toward mature whatever in digesta or mucosa. In the rumen, the composition of the bacterial community in digesta differed significantly from in mucosa across age groups; whereas in the hindgut, there was a high similarity of bacterial composition between the in digesta and mucosa in each age group before weaning, while the bacterial community structure differed markedly between these two types of samples after weaning. Taxonomic analysis indicated that 25 and 21 core genera coexisted in digesta and mucosa of the rumen and hindgut, respectively; but their abundances differed considerably by GIT region and/or age. In digesta, as goats aged, a lower abundance of Bacillus was observed with higher abundances of Prevotella 1 and Rikenellaceae RC9 in the rumen; while in the hindgut, the genera Escherichia-Shigella, Variovorax, and Stenotrophomonas decreased and Ruminococcaceae UCG-005, Ruminococcaceae UCG-010, and Alistipes increased with age increased. In mucosa, the rumen showed microbial dynamics with increases of Butyrivibrio 2 and Prevotellaceae UCG-001 and decreases of unclassified_f_Pasteurellaceae; while the genera Treponema 2 and Ruminococcaceae UCG-010 increased and Escherichia-Shigella decreased in the hindgut as goats aged. These results shed light on the colonization process of microbiota in the rumen and hindgut, which mainly include the initial, transit, and mature phases. Furthermore, there is a significant difference in the microbial composition between in digesta and mucosa, and both these exhibit a considerable spatiotemporal specificity.

...