Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Adv Mater ; : e2406451, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888505

RESUMEN

Zinc metal is recognized as the most promising anode for aqueous energy storage but suffers from severe dendrite growth and poor reversibility. However, the coulombic efficiency lacks specificity for zinc dendrite growth, particularly in Zn||Zn symmetric cells. Herein, a novel indicator (fD) based on the characteristic crystallization peaks is proposed to evaluate the growth and distribution of zinc dendrites. As a proof of concept, triethylenetetramine (TETA) is adopted as an electrolyte additive to manipulate the zinc flux for uniform deposition, with a corroborating low fD value. A highly durable zinc symmetric cell is achieved, lasting over 2500 h at 10 mA cm-2 and 400 h at a large discharge of depth (10 mA cm-2, 10 mAh cm-2). Supported by the low fD value, the Zn||TETA-ZnSO4||MnO2 batteries overcome the sudden short circuit and fast capacity fading. The study provides a feasible method to evaluate zinc dendrites and sheds light on the design of highly reversible zinc anodes.

2.
Adv Mater ; : e2401549, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739735

RESUMEN

Residual solvents in vinylidene fluoride (VDF)-based solid polymer electrolytes (SPEs) have been recognized as responsible for their high ionic conductivity. However, side reactions by the residual solvents with the lithium (Li) metal induce poor stability, which has been long neglected. This study proposes a strategy to achieve a delicate equilibrium between ion conduction and electrode stability for VDF-based SPEs. Specifically, 2,2,2-trifluoro-N,N-dimethylacetamide (FDMA) is developed as the nonside reaction solvent for poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)-based SPEs, achieving both high ionic conductivity and significantly improved electrochemical stability. The developed FDMA solvent fosters the formation of a stable solid electrolyte interphase (SEI) through interface reactions with Li metal, effectively mitigating side reactions and dendrite growth on the Li metal electrode. Consequently, the Li||Li symmetric cells and Li||LiFePO4 cells demonstrate excellent cycling performance, even under limited Li (20 µm thick) supply and high-loading cathodes (>10 mg cm-2, capacity >1 mAh cm-2) conditions. The stable Li||LiCoO2 cells operation with a cutoff voltage of 4.48 V indicates the high-voltage stability of the developed SPE. This study offers valuable insights into the development of advanced VDF-based SPEs for enhanced lithium metal battery performance and longevity.

3.
Adv Mater ; 36(26): e2401924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593988

RESUMEN

With the increasing need for reliable storage systems, the conversion-type chemistry typified by bromine cathodes attracts considerable attention due to sizeable theoretical capacity, cost efficiency, and high redox potential. However, the severe loss of active species during operation remains a problem, leading researchers to resort to concentrated halide-containing electrolytes. Here, profiting from the intrinsic halide exchange in perovskite lattices, a novel low-dimensional halide hybrid perovskite cathode, TmdpPb2[IBr]6, which serves not only as a halogen reservoir for reversible three-electron conversions but also as an effective halogen absorbent by surface Pb dangling bonds, C─H…Br hydrogen bonds, and Pb─I…Br halogen bonds, is proposed. As such, the Zn||TmdpPb2[IBr]6 battery delivers three remarkable discharge voltage plateaus at 1.21 V (I0/I-), 1.47 V (I+/I0), and 1.74 V (Br0/Br-) in a typical halide-free electrolyte; meanwhile, realizing a high capacity of over 336 mAh g-1 at 0.4 A g-1 and high capacity retentions of 88% and 92% after 1000 cycles at 1.2 A g-1 and 4000 cycles at 3.2 A g-1, respectively, accompanied by a high coulombic efficiency of ≈99%. The work highlights the promising conversion-type cathodes based on metal-halide perovskite materials.

4.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613308

RESUMEN

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

5.
Micromachines (Basel) ; 15(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675336

RESUMEN

The well-known limitations of spray cooling on high-temperature solids at the Leidenfrost temperature point have been significantly improved by a composite structure of steel micropillar arrays and insulating thin films. However, the physical mechanism of a single droplet impact on the walls of high-temperature composite structures in spray cooling remains elusive. We have experimentally studied and quantified the kinematic and thermal transfer characteristics of a single droplet impacting high-temperature micropillar arrays with fiber membrane composite structures. In particular, micropillar arrays of ceramic materials of different shapes (rectangular and cylindrical) used in this study were made using the more flexible PµSL technique, for which precision reaches the micron level. The results show that the presence and different layouts (embedded or placed on top) of the fiber layer significantly affect the spreading coefficient and thermal transfer efficiency of the droplets after impact. In terms of kinematic characteristics, unrelated to the structure of micropillar arrays, compared to structures without film, the maximum spreading coefficient of droplets significantly increased by more than 40% (43% for rectangular, 46% for cylindrical) when the fiber film was placed on top, and increased by more than 20% (20% for rectangular, 33% for cylindrical) when the fiber film was embedded. In terms of thermal transfer characteristics, at a temperature of 200 °C, the presence of the fiber layer changed the wettability of the surface of the micropillar structure, leading to a certain extension of the total evaporation time of the droplets compared to the surface of the micropillar structure without film.

6.
Opt Express ; 32(2): 2554-2560, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297781

RESUMEN

We investigate the robustness of a modified multi-trench fiber (MTF) design with two gaps numerically. The excellent suppression of high-order modes is demonstrated over a wide range of the gap misalignment and the fundamental mode loss is barely affected even with the 5 dB/m scattering loss in gaps at the modified two-gap MTF for the first time. Therefore, the required fabrication accuracy decreases.

7.
Adv Mater ; 36(4): e2304557, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37587645

RESUMEN

Although conversion-type iodine-based batteries are considered promising for energy storage systems, stable electrode materials are scarce, especially for high-performance multi-electron reactions. The use of tin-based iodine-rich 2D Dion-Jacobson (DJ) ODASnI4 (ODA: 1,8-octanediamine) perovskite materials as cathode materials for iodine-based batteries is suggested. As a proof of concept, organic lithium-perovskite and aqueous zinc-perovskite batteries are fabricated and they can be operated based on the conventional one-electron and advanced two-electron transfer modes. The active elemental iodine in the perovskite cathode provides capacity through a reversible I- /I+ redox pair conversion at full depth, and the rapid electron injection/extraction leads to excellent reaction kinetics. Consequently, high discharge plateaus (1.71 V vs Zn2+ /Zn; 3.41 V vs Li+ /Li), large capacity (421 mAh g-1 I ), and a low decay rate (1.74 mV mAh-1 g-1 I ) are achieved for lithium and zinc ion batteries, respectively. This study demonstrates the promising potential of perovskite materials for high-performance metal-iodine batteries. Their reactions based on the two-electron transfer mechanism shed light on similar battery systems aiming for decent operational stability and high energy density.

8.
Adv Mater ; 36(6): e2308210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37916840

RESUMEN

As the need for sustainable battery chemistry grows, non-metallic ammonium ion (NH4 + ) batteries are receiving considerable attention because of their unique properties, such as low cost, nontoxicity, and environmental sustainability. In this study, the solvation interactions between NH4 + and solvents are elucidated and design principles for NH4 + weakly solvated electrolytes are proposed. Given that hydrogen bond interactions dominate the solvation of NH4 + and solvents, the strength of the solvent's electrostatic potential directly determines the strength of its solvating power. As a proof of concept, succinonitrile with relatively weak electronegativity is selected to construct a metal-free eutectic electrolyte (MEE). As expected, this MEE is able to significantly broaden the electrochemical stability window and reduce the solvent binding energy in the solvation shell, which leads to a lower desolvation energy barrier and a fast charge transfer process. As a result, the as-constructed NH4 -ion batteries exhibit superior reversible rate capability (energy density of 65 Wh kg-1 total active mass at 600 W kg-1 ) and unprecedent long-term cycling performance (retention of 90.2% after 1000 cycles at 1.0 A g-1 ). The proposed methodology for constructing weakly hydrogen bonded electrolytes will provide guidelines for implementing high-rate and ultra-stable NH4 + -based energy storage systems.

9.
Angew Chem Int Ed Engl ; 62(44): e202310006, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702354

RESUMEN

The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+ . The well-designed eutectic-based PAN1.2 -SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm-1 at 30 °C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2 -SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm-2 , and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6 Co0.2 Mn0.2 O2 pouch cells employing PAN1.2 -SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries.

10.
Microb Ecol ; 86(4): 2781-2789, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37552473

RESUMEN

To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of the photic zone and at almost all stations. Twenty-nine nitrate-reducing strains representing different species were selected for further the study of nitrogen, sulfur, and carbon metabolism. All 29 nitrate-reducing isolates contained genes encoding dissimilatory nitrate reduction or assimilatory nitrate reduction. Six nitrate-reducing isolates can oxidize thiosulfate based on genomic analysis and activity testing, indicating that nitrate-reducing thiosulfate-oxidizing bacteria exist in the photic zone. Five nitrate-reducing isolates obtained near the chlorophyll a-maximum layer contained a dimethylsulfoniopropionate synthesis gene and three of them contained both dimethylsulfoniopropionate synthesis and cleavage genes. This suggests that nitrate-reducing isolates may participate in dimethylsulfoniopropionate synthesis and catabolism in photic seawater. The presence of multiple genes for chitin degradation and extracellular peptidases may indicate that almost all nitrate-reducing isolates (28/29) can use chitin and proteinaceous compounds as important sources of carbon and nitrogen. Collectively, these results reveal culturable nitrate-reducing bacterial diversity and have implications for understanding the role of such strains in the ecology and biogeochemical cycles of nitrogen, sulfur, and carbon in the oligotrophic marine photic zone.


Asunto(s)
Nitratos , Tiosulfatos , Océano Pacífico , Clorofila A , Agua de Mar/microbiología , Azufre/metabolismo , Nitrógeno/metabolismo , Carbono , Quitina , Filogenia
11.
Microbiome ; 11(1): 160, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491386

RESUMEN

BACKGROUND: Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS: Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS: This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.


Asunto(s)
Compuestos Férricos , Manganeso , Manganeso/metabolismo , Compuestos Férricos/metabolismo , Sedimentos Geológicos/microbiología , Bacterias , Hierro/metabolismo , Archaea
12.
Opt Lett ; 48(6): 1367-1370, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946929

RESUMEN

With the increasing signal rates of a long-haul backbone dense-wavelength-division-multiplexing (DWDM) transmission system, e.g., from 100 Gb/s to 400 Gb/s and even to 800 Gb/s, optical path impairments simultaneously become more severe. Harmful factors being formerly insignificant become noticeable, e.g., nonlinear phase noise (NPN) on main DWDM channels induced by the cross-phase modulation (XPM) from the low-speed optical supervisory channel (OSC). Field trials show that a greater than 5.13-dB penalty can be observed on the shortest channel of 400G DP-16QAM-PCS over G.654.E links, which greatly degrades the overall transmission performance and limits the maximum reach. In this paper, we propose a dual-OSC structure with opposite signals to compensate for performance degradation caused by OSC-induced NPN. This method involves no extra digital signal processing (DSP), which is not only simple but also applicable for universal signal rates. By experimental demonstration, a 1.32-dB gain in Q (dB) for 200G DP-16QAM transmission over 1618-km G.652.D can be done, almost achieving the same performance as the no OSC case.

13.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679177

RESUMEN

Vibration pretreatment microwave curing is a high-quality and efficient composite out-of-autoclave molding process. Focusing on interlaminar shear strength, the effects of pretreatment temperature, pretreatment time and vibration acceleration on the molding performance of composite components were analyzed sequentially using the orthogonal test design method; a scanning electron microscope (SEM) and optical digital microscope (ODM) were used to analyze the void content and fiber-resin bonding state of the specimens under different curing and molding processes. The results show that the influence order of the different vibration process parameters on the molding quality of the components was: vibration acceleration > pretreatment temperature > pretreatment time. Within the parameters analyzed in this study, the optimal vibration pretreatment process parameters were: pretreatment temperature of 90 °C, pretreatment time of 30 min, and vibration acceleration of 10 g. Using these parameters, the interlaminar shear strength of the component was 82.12 MPa and the void content was 0.37%. Compared with the microwave curing process, the void content decreased by 71.8%, and the interlaminar shear strength increased by 31.6%. The microscopic morphology and mechanical properties basically reached the same level as the standard autoclave process, which achieved a high-quality out-of-autoclave curing and molding manufacturing of aerospace composite components.

14.
ChemSusChem ; 16(9): e202202158, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36658096

RESUMEN

All-solid-state batteries (ASSBs) based on inorganic solid electrolytes (SEs) are one of the most promising strategies for next-generation energy storage systems and electronic devices due to the higher energy density and intrinsic safety. However, the poor solid-solid contact and restricted chemical/electrochemical stability of inorganic SEs both in cathode and anode SE interfaces cause contact failure and the degeneration of SEs during prolonged charge-discharge processes. As a result, the increasing interface resistance significantly affects the coulombic efficiency and cycling performance of ASSBs. Herein, we present a fundamental understanding of physical contact and chemical/electrochemical features of ASSB interfaces based on mainstream inorganic SEs and summarize the recent work on interface modification. SE doping, optimizing morphology, introducing interlayer/coating layer, and utilizing compatible electrode materials are the key methods to prevent side reactions, which are discussed separately in cathode/anode-SE interface. We also highlight the constant extra stack pressure applied during ASSB cycling, which is important to the electrochemical performance. Finally, our perspectives on interface modification for practical high-performance ASSBs are put forward.

15.
Antonie Van Leeuwenhoek ; 116(2): 185-192, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36374402

RESUMEN

The Gram-stain-negative, golden-yellow-colored, non-spore-forming, strictly aerobic, slender rod-shaped bacterial strain, designated KN852T, was isolated from a seamount in the tropical western Pacific. The predominant respiratory quinone was MK-7 and the polar lipid profiles contained phosphatidylethanolamine, one unidentified phospholipid and six unidentified polar lipids. The predominant cellular fatty acids were iso-C15:0, summed feature 3(C16:1ω7c and/or iso-C15:0 2OH), iso-C17:0 3OH and iso-C15:1 G. Phylogenetic analyses of 16S rRNA gene sequence revealed that strain KN852T was affiliated with the family Flammeovirgaceae of the phylum Bacteroidota and formed a distinct lineage. The genomic DNA G + C content of strain KN852T was 34.8%. Collectively, based on phenotypic, chemotaxonomic, phylogenetic and genomic evidence presented, strain KN852T represents a novel species of a novel genus of the family Flammeovirgaceae, for which the name Marinigracilibium pacificum gen. nov., sp. nov. is proposed. The type strain is KN852T (= CGMCC 1.17119T = KCTC 72433T).


Asunto(s)
Flavobacteriaceae , Flavobacteriaceae/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Vitamina K 2 , Ácidos Grasos , Bacteroidetes/genética
16.
Opt Express ; 31(26): 42850-42865, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178394

RESUMEN

The co-route optical fibers, comprising both co-cable and co-trench fibers, pose a significant potential risk to network service quality assurance by operators. They are incapable of achieving high-precision recognition and visual state management. In this study, we gathered both static and dynamic optical fiber data using a linewidth tunable light source (LTLS) and introduced a multimodal detection architecture that applies ensemble learning to the collected data. This constitutes what we believe to be the first field trial of concurrent recognition of optical fibers found both in co-cables and co-trenches. To identify co-cable fibers, we employed a double-layer cascaded Random Forest (DLC-RF) model based on the static features of fibers. For co-trench fiber, the dynamic characteristics of fiber vibrations are utilized in combination with multiple independent curve similarity contrast learners for classifying tasks. The proposed architecture is capable of automatically detecting the condition of the optical fiber and actively identifying the same routing segment within the network, eliminating the need for human intervention and enabling the visualization of passive optical fiber resources. Finally, after rigorous testing and validation across 11 sites in a typical urban area, including aggregation and backbone scenarios within the operator's live network environments, we have confirmed that the solution's ability to identify co-routes is accurate, exceeding 95%. This provides strong empirical evidence of its effectiveness.

17.
Adv Sci (Weinh) ; 9(14): e2200247, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35289124

RESUMEN

Secondary batteries have been widespread in the daily life causing an ever-growing demand for long-cycle lifespan and high-energy alkali-ion batteries. As an essential constituent part, electrode materials with superior electrochemical properties play a vital role in the battery systems. Here, an outstanding electrode of yolk-shell ZnS@C nanorods is developed, introducing considerable void space via a self-sacrificial template method. Such carbon encapsulated nanorods moderate integral electronic conductivity, thus ensuring rapid alkali-ions/electrons transporting. Furthermore, the porous structure of these nanorods endows enough void space to mitigate volume stress caused by the insertion/extraction of alkali-ions. Due to the unique structure, these yolk-shell ZnS@C nanorods achieve superior rate performance and cycling performance (740 mAh g-1 at 1.0 A g-1 after 540 cycles) for lithium-ion batteries. As a potassium-ion batteries anode, they achieve an ultra-long lifespan delivering 211.1 mAh g-1 at 1.0 A g-1 after 5700 cycles. The kinetic analysis reveals that these ZnS@C nanorods with considerable pseudocapacitive contribution benefit the fast lithiation/delithiation. Detailed transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses indicate that such yolk-shell ZnS@C anode is a typical reversible conversion reaction mechanism accomplished by alloying processes. This rational design strategy opens a window for the development of superior energy storage materials.

18.
Nature ; 602(7896): 229-233, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140383

RESUMEN

Ultracold assembly of diatomic molecules has enabled great advances in controlled chemistry, ultracold chemical physics and quantum simulation with molecules1-3. Extending the ultracold association to triatomic molecules will offer many new research opportunities and challenges in these fields. A possible approach is to form triatomic molecules in a mixture of ultracold atoms and diatomic molecules by using a Feshbach resonance between them4,5. Although ultracold atom-diatomic-molecule Feshbach resonances have been observed recently6,7, using these resonances to form triatomic molecules remains challenging. Here we report on evidence of the association of triatomic molecules near the Feshbach resonance between 23Na40K molecules in the rovibrational ground state and 40K atoms. We apply a radio-frequency pulse to drive the free-bound transition in ultracold mixtures of 23Na40K and 40K and monitor the loss of 23Na40K molecules. The association of triatomic molecules manifests itself as an additional loss feature in the radio-frequency spectra, which can be distinguished from the atomic loss feature. The observation that the distance between the association feature and the atomic transition changes with the magnetic field provides strong evidence for the formation of triatomic molecules. The binding energy of the triatomic molecules is estimated from the measurements. Our work contributes to the understanding of the complex ultracold atom-molecule Feshbach resonances and may open up an avenue towards the preparation and control of ultracold triatomic molecules.

19.
Small ; 18(13): e2106640, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35146906

RESUMEN

Lithium-sulfur (Li-S) batteries have been considered as one of the most promising electrochemical energy storage systems because of their high energy density. However, a series of issues severely limit the practical performances of Li-S batteries such as low conductivity, significant volume change, and shuttle effect. The hollow carbon spheres with huge voids and high electrical conductivity are promising as sulfur hosts. Unfortunately, the nonpolar nature of carbon materials cannot prevent the shuttle effect effectively. In this case, the atomic cobalt is introduced to a nitrogen-doped hollow carbon sphere (ACo@HCS) through polymerization and controlled pyrolysis. The atomic cobalt dopants not only act as active sites to restrict the shuttle effect, but also can promote the kinetics of the sulfur redox reactions. ACo@HCS acting as sulfur host exhibits a high discharge capacity (1003 mAh g-1 ) at a 1.0 C rate after 500 cycles, and the corresponding decay rate is as low as 0.002% per cycle. This exciting work paves a new way to design high-performance Li-S batteries.

20.
Adv Sci (Weinh) ; 9(12): e2104277, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35191226

RESUMEN

Solid-state lithium metal batteries (SLMBs) are attracting enormous attention due to their enhanced safety and high theoretical energy density. However, the alkali lithium with high reducibility can react with the solid-state electrolytes resulting in the inferior cycle lifespan. Herein, inspired by the idea of interface design, the 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide as an initiator to generate an artificial protective layer in polymer electrolyte is selected. Time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal the stable solid electrolyte interface (SEI) is in situ formed between the electrolyte/Li interface. Scanning electron microscopy (SEM) images demonstrate that the constructed SEI can promote homogeneous Li deposition. As a result, the Li/Li symmetrical cells enable stable cycle ultralong-term for over 4500 h. Moreover, the as-prepared LiFePO4 /Li SLMBs exhibit an impressive ultra-long cycle lifespan over 1300 cycles at 1 C, as well as 1600 cycles at 0.5 C with a capacity retention ratio over 80%. This work offers an effective strategy for the construction of the stable electrolyte/Li interface, paving the way for the rapid development of long lifespan SLMBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...