Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Ecotoxicol Environ Saf ; 278: 116436, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723383

Excessive exposure to light is a global issue. Artificial light pollution has been shown to disrupt the body's natural circadian rhythm. To investigate the impacts of light on metabolism, we studied Sprague-Dawley rats chronically exposed to red or blue light during daytime or nighttime. Rats in the experimental group were exposed to extended light for 4 hours during daytime or nighttime to simulate the effects of excessive light usage. Strikingly, we found systemic metabolic alterations only induced by blue light during daytime. Furthermore, we conducted metabolomic analyses of the cerebrospinal fluid, serum, heart, liver, spleen, adrenal, cerebellum, pituitary, prostate, spermatophore, hypothalamus and kidney from rats in the control and blue light exposure during daytime. Significant changes in metabolites have been observed in cerebrospinal fluid, serum, hypothalamus and kidney of rats exposed to blue light during daytime. Metabolic alterations observed in rats encompassing pyruvate metabolism, glutathione metabolism homocysteine degradation, phosphatidylethanolamine biosynthesis, and phospholipid biosynthesis, exhibit analogous patterns to those inherent in specific physiological processes, notably neurodevelopment, cellular injury, oxidative stress, and autophagic pathways. Our study provides insights into tissue-specific metabolic changes in rats exposed to blue light during the daytime and may help explain potential mechanisms of photopathogenesis.

2.
Front Cell Dev Biol ; 12: 1383232, 2024.
Article En | MEDLINE | ID: mdl-38586304

Studies have shown that bortezomib resistance in multiple myeloma (MM) is mediated by the abnormalities of various molecules and microenvironments. Exploring these resistance mechanisms will improve the therapeutic efficacy of bortezomib. In this study, bone marrow tissues from three patients with MM, both sensitive and resistant to bortezomib, were collected for circRNA high-throughput sequencing analysis. The relationship between circ_0000337, miR-98-5p, and target gene DNA2 was analyzed by luciferase detection and verified by RT-qPCR. We first found that circ_0000337 was significantly upregulated in bortezomib-resistant MM tissues and cells, and overexpression of circ_0000337 could promote bortezomib resistance in MM cells. circ_0000337 may act as a miR-98-5p sponge to upregulate DNA2 expression, regulate DNA damage repair, and induce bortezomib resistance. Furthermore, it was determined that the increased circ_0000337 level in bortezomib-resistant cells was due to an increased N6-methyladenosine (m6A) level, resulting in enhanced RNA stability. In conclusion, the m6A level of circ_0000337 and its regulation may be a new and potential therapeutic target for overcoming bortezomib resistance in MM.

3.
J Photochem Photobiol B ; 252: 112867, 2024 Mar.
Article En | MEDLINE | ID: mdl-38368636

Arginine methylation (ArgMet), as a post-translational modification, plays crucial roles in RNA processing, transcriptional regulation, signal transduction, DNA repair, apoptosis and liquid-liquid phase separation (LLPS). Since arginine methylation is associated with cancer pathogenesis and progression, protein arginine methyltransferases have gained interest as targets for anti-cancer therapy. Despite considerable process made to elucidate (patho)physiological mechanisms regulated by arginine methylation, there remains a lack of tools to visualize arginine methylation with high spatiotemporal resolution in live cells. To address this unmet need, we generated an ArgMet-sensitive genetically encoded, Förster resonance energy transfer-(FRET) based biosensor, called GEMS, capable of quantitative real-time monitoring of ArgMet dynamics. We optimized these biosensors by using different ArgMet-binding domains, arginine-glycine-rich regions and adjusting the linkers within the biosensors to improve their performance. Using a set of mammalian cell lines and modulators, we demonstrated the applicability of GEMS for monitoring changes in arginine methylation with single-cell and temporal resolution. The GEMS can facilitate the in vitro screening to find potential protein arginine methyltransferase inhibitors and will contribute to a better understanding of the regulation of ArgMet related to differentiation, development and disease.


Arginine , Fluorescence Resonance Energy Transfer , Animals , Arginine/chemistry , Methylation , Gene Expression Regulation , Coloring Agents , Protein Processing, Post-Translational , Mammals/metabolism
4.
Heliyon ; 9(10): e20612, 2023 Oct.
Article En | MEDLINE | ID: mdl-37842561

Background: POEMS syndrome is a rare and complex plasma cell disorder characterized by polyneuropathy, organomegaly, endocrinopathy, high M protein levels, and skin changes. Understanding of POEMS syndrome has advanced rapidly since the 21st century. This study aims to summarize and evaluate the research status of POEMS syndrome in the past 23 years through a bibliometric and visualization analysis, and identify research focuses and emerging hotspots for the future. Methods: POEMS syndrome-related articles published between January 1, 2000, and March 8, 2023, were systematically retrieved from the Web of Science Core Collection. Data processing and visualization analysis were carried out using a combination of R software, HistCite, VOSviewer, and CiteSpace. Results: Since entering the 21st century, 3677 authors from 1125 institutions in 68 countries/regions have published 830 original and review articles on POEMS syndrome in 408 journals so far, among which the USA, Japan, and China published the most articles, and Mayo Clinic, Udice French Research Universities, and Peking Union Medical College listed the top three most prolific institutions. However, collaborative research across countries and groups in the study of POEMS syndrome remain significantly limited. Angela Dispenzieri ranked first in POEMS syndrome research from every aspect of authors, producing the most papers and contributing the most-cited article, followed by Satoshi Kuwabara and Sonoko Misawa. Internal medicine was the most productive journal on POEMS syndrome. "endothelial growth factor" was the keyword with the highest occurrence except for "POEMS syndrome", and "bevacizumab", "lenalidomide", "dexamethasone", and "management" were recognized as emerging topics. Conclusion: This study utilized bibliometric and visualization analysis to systematically summarize the research of POEMS syndrome in the first two decades of the 21st century, offering a data-based and objective perspective on the field of POEMS syndrome and guiding researchers in the identification of novel research directions.

5.
Chem Biol Interact ; 384: 110687, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37657595

The activating protein-1 (AP-1) transcription factors (TFs) have been associated with many different cancer types and are promising therapeutic targets in logical malignancies. However, the mechanisms of their role in multiple myeloma (MM) remain elusive. The present study determined and compared the mRNA and protein expression levels of the AP-1 family member JunB in CD138+ mononuclear cells from MM patients and healthy donors. Herein, we investigated the effect of T-5224, an inhibitor of JUN/AP-1, on MM. We found that the cytotoxicity of T-5224 toward myeloma is due to its ability to induce cell apoptosis, inhibit proliferation, and induce cell cycle arrest by increasing the levels of cleaved caspase3/7 and concomitantly inhibiting the IRF4/MYC axis. We also noticed that siJunB-mediated deletion of JunB/AP-1 enhanced MM cell apoptosis and affected cell proliferation. The software PROMO was used in the present study to predict the AP-1 TF that may bind the promoter region of IRF4. We confirmed the correlation between JunB/AP-1 and IRF4. Given that bortezomib (BTZ) facilitates IRF4 degradation in MM cells, we applied combination treatment of BTZ with T-5224. T-5224 and BTZ exerted synergistic effects, and T-5224 reversed the effect of BTZ on CD138+ primary resistance in MM cells, in part due to suppression of the IRF4/MYC axis. Our results suggest that targeting AP-1 TFs is a promising therapeutic strategy for MM. Additionally, targeting both AP-1 and IRF4 with T-5224 may be a synergistic therapeutic strategy for this clinically challenging subset of MM.


Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Bortezomib/therapeutic use , Transcription Factor AP-1 , Benzophenones , Isoxazoles , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Int J Pharm ; 643: 123241, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37479101

Multiple myeloma (MM) is a malignant and incurable disease. Chemotherapy is currently the primary treatment option for MM. However, chemotherapeutic drugs can interrupt treatment because of serious side effects. Therefore, development of novel therapeutics for MM is essential. In this study, we designed and constructed an innovative nanoparticle-based drug delivery system, P-R@Ni3P-BTZ, and investigated its feasibility, effectiveness, and safety both in vitro and in vivo. P-R@Ni3P-BTZ is a nanocomposite that consists of two parts: (1) the drug carrier (Ni3P), which integrates photothermal therapy (PTT) with chemotherapy by loading bortezomib (BTZ); and (2) the shell (P-R), a CD38 targeting peptide P-modified red blood cell membrane nanovesicles. In vitro and in vivo, it was proven that P-R@Ni3P-BTZ exhibits remarkable antitumor effects by actively targeting CD38 + MM cells. P-R@Ni3P-BTZ significantly induces the accumulation of intracellular reactive oxygen species (ROS) and increases the apoptosis of MM cells, which underlies the primary mechanism of its antitumor effects. In addition, P-R@Ni3P exhibits good biocompatibility and biosafety, both in vitro and in vivo. Overall, P-R@Ni3P-BTZ is a specific and efficient MM therapeutic method.


Antineoplastic Agents , Multiple Myeloma , Nanoparticles , Humans , Apoptosis , Bortezomib , Cell Line, Tumor , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Nanoparticles/administration & dosage
7.
Sci Total Environ ; 894: 165018, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37353023

The increasing demand for rare earth elements (REEs) in modern applications has drawn significant attention. REEs can be introduced into the environment through REE-containing fertilizers, abandoned REE-rich equipment, and mining, persisting and impacting soil quality, nutrient cycles, and plant growth. Scientists have raised concerns about REEs entering the food chain from the environment and eventually accumulating in organisms. Decades of experimental evidence have shown that these effects include inhibited growth, impaired liver function, and alterations in children's intelligence quotients. However, there exists a paucity of research that has elucidated the metabolic-level biological impacts of REEs. In our study, Caenorhabditis elegans (C. elegans) was used as a model organism to investigate physiological and inherent metabolic changes under exposure to different concentrations of REEs. The diet bacteria of nematodes play a key role in their life and development. Therefore, we investigated the influence of bacterial activity on the nematodes' response to REE exposure. We observed a concentration-dependent accumulation of REEs in nematodes, which consequently led to a reduction in lifespan and alterations in body length. Exposure to a mixed solution of REEs, in comparison to a single REE solution, resulted in greater toxicity toward nematodes. The metabolic results showed that the above changes were closely related to REE-induced amino acid metabolism disorder, membrane disturbance, DNA damage, and oxidative stress. Of note, the presence of living bacteria elicits REE effects in C. elegans. These findings highlight the potential intrinsic metabolic changes occurring in nematodes under REE exposure. Our study raises awareness of the exposure risks associated with REEs, provides valuable insight into the metabolic-level biological impacts of REEs and contributes to the development of effective mitigation strategies to reduce potential risks to human health.


Cerium , Metals, Rare Earth , Animals , Child , Humans , Lanthanum/toxicity , Caenorhabditis elegans , Metals, Rare Earth/analysis , Soil/chemistry
8.
J Mater Chem B ; 11(25): 5767-5776, 2023 06 28.
Article En | MEDLINE | ID: mdl-37157979

Nanotoxicology on plants has raised great concerns about the prevalence of nanoparticles (NPs) in ecosystems, and the most fundamental aspect is to assess the fate of NPs in plants. Nonetheless, the lack of high-sensitivity tracking techniques in vivo constraints intensive research on NP distribution in plants. Herein, we have overcome this limitation by first introducing persistent luminescent nanoparticles (PLNPs) as an imaging probe, which can detect the distribution of NPs in whole plants with high sensitivity by completely eliminating interference from autofluorescence. We synthesized two differently surface-charged PLNPs with excellent biosafety and then exposed these NPs to plants in the hydroponic medium. Persistent luminescence (PersL) images visually showed the disparate accumulation of PLNPs in plants. PersL signals of positively charged PLNPs were observed in the whole exposed portion of the plant roots, while negatively charged PLNPs were mainly in the root collars instead of the exposed portion. With prolonged exposure, the presence of PersL signals in leaves indicated the long-distance translocation of differently charged PLNPs from roots to leaves via hypocotyls. For further confirmation of imaging results, the distribution of NPs in plants was investigated using electron microscopy. Based on their unique optical properties, PLNPs provide a promising strategy for tracking NP's fate in plants.


Luminescence , Nanoparticles , Ecosystem , Diagnostic Imaging
9.
J Transl Med ; 21(1): 54, 2023 01 29.
Article En | MEDLINE | ID: mdl-36710341

BACKGROUND: Clear cell sarcomas (CCSs) are translocated aggressive malignancies, most commonly affecting young adults with a high incidence of metastases and a poor prognosis. Research into the disease is more feasible when adequate models are available. By establishing CCS cell lines from a primary and metastatic lesion and isolating healthy fibroblasts from the same patient, the in vivo process is accurately reflected and aspects of clinical multistep carcinogenesis recapitulated. METHODS: Isolated tumor cells and normal healthy skin fibroblasts from the same patient were compared in terms of growth behavior and morphological characteristics using light and electron microscopy. Tumorigenicity potential was determined by soft agar colony formation assay and in vivo xenograft applications. While genetic differences between the two lineages were examined by copy number alternation profiles, nuclear magnetic resonance spectroscopy determined arginine methylation as epigenetic features. Potential anti-tumor effects of a protein arginine N-methyltransferase type I (PRMT1) inhibitor were elicited in 2D and 3D cell culture experiments using cell viability and apoptosis assays. Statistical significance was calculated by one-way ANOVA and unpaired t-test. RESULTS: The two established CCS cell lines named MUG Lucifer prim and MUG Lucifer met showed differences in morphology, genetic and epigenetic data, reflecting the respective original tissue. The detailed cell line characterization especially in regards to the epigenetic domain allows investigation of new innovative therapies. Based on the epigenetic data, a PRMT1 inhibitor was used to demonstrate the targeted antitumor effect; normal tissue cells isolated and immortalized from the same patient were not affected with the IC50 used. CONCLUSIONS: MUG Lucifer prim, MUG Lucifer met and isolated and immortalized fibroblasts from the same patient represent an ideal in vitro model to explore the biology of CCS. Based on this cell culture model, novel therapies could be tested in the form of PRMT1 inhibitors, which drive tumor cells into apoptosis, but show no effect on fibroblasts, further supporting their potential as promising treatment options in the combat against CCS. The data substantiate the importance of tailored therapies in the advanced metastatic stage of CCS.


Sarcoma, Clear Cell , Humans , Sarcoma, Clear Cell/genetics , Sarcoma, Clear Cell/metabolism , Sarcoma, Clear Cell/pathology , Cell Line , Enzyme Inhibitors , Arginine/genetics , Arginine/metabolism , Arginine/therapeutic use , Epigenesis, Genetic , Cell Line, Tumor , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/therapeutic use , Repressor Proteins/genetics
10.
Prog Neurobiol ; 221: 102400, 2023 02.
Article En | MEDLINE | ID: mdl-36581185

Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disease with multiple histopathological subtypes. FTD patients share similar symptoms with Alzheimer's disease (AD). Hence, FTD patients are commonly misdiagnosed as AD, despite the consensus clinical diagnostic criteria. It is therefore of great clinical need to identify a biomarker that can distinguish FTD from AD and control individuals, and potentially further differentiate between FTD pathological subtypes. We conducted a metabolomic analysis on post-mortem human brain tissue from three regions: cerebellum, frontal cortex and occipital cortex from control, FTLD-TDP type A, type A-C9, type C and AD. Our results indicate that the brain subdivisions responsible for different functions show different metabolic patterns. We further explored the region-specific metabolic characteristics of different FTD subtypes and AD patients. Different FTD subtypes and AD share similar metabolic phenotypes in the cerebellum, but AD exhibited distinct metabolic patterns in the frontal and occipital regions compared to FTD. The identified brain region-specific metabolite biomarkers could provide a tool for distinguishing different FTD subtypes and AD and provide the first insights into the metabolic changes of FTLD-TDP type A, type A-C9, type C and AD in different regions of the brain. The importance of protein arginine methylation in neurodegenerative disease has come to light, so we investigated whether the arginine methylation level contributes to disease pathogenesis. Our findings provide new insights into the relationship between arginine methylation and metabolic changes in FTD subtypes and AD that could be further explored, to study the molecular mechanism of pathogenesis.


Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Frontotemporal Dementia/diagnosis , Methylation , Neurodegenerative Diseases/pathology , Brain/pathology , Biomarkers , Phenotype
11.
Biomolecules ; 12(9)2022 09 09.
Article En | MEDLINE | ID: mdl-36139111

Phospholipid metabolism, including phosphatidylcholine (PC) biosynthesis, is crucial for various biological functions and is associated with longevity. Phosphatidylethanolamine N-methyltransferase (PEMT) is a protein that catalyzes the biosynthesis of PC, the levels of which change in various organs such as the brain and kidneys during aging. However, the role of PEMT for systemic PC supply is not fully understood. To address how PEMT affects aging-associated energy metabolism in tissues responsible for nutrient absorption, lipid storage, and energy consumption, we employed NMR-based metabolomics to study the liver, plasma, intestine (duodenum, jejunum, and ileum), brown/white adipose tissues (BAT and WAT), and skeletal muscle of young (9-10 weeks) and old (91-132 weeks) wild-type (WT) and PEMT knockout (KO) mice. We found that the effect of PEMT-knockout was tissue-specific and age-dependent. A deficiency of PEMT affected the metabolome of all tissues examined, among which the metabolome of BAT from both young and aged KO mice was dramatically changed in comparison to the WT mice, whereas the metabolome of the jejunum was only slightly affected. As for aging, the absence of PEMT increased the divergence of the metabolome during the aging of the liver, WAT, duodenum, and ileum and decreased the impact on skeletal muscle. Overall, our results suggest that PEMT plays a previously underexplored, critical role in both aging and energy metabolism.


Aging , Liver , Phosphatidylethanolamine N-Methyltransferase , Animals , Liver/metabolism , Mice , Mice, Knockout , Phosphatidylcholines , Phosphatidylethanolamine N-Methyltransferase/genetics , Phosphatidylethanolamine N-Methyltransferase/metabolism , Phospholipids/metabolism
12.
Front Genet ; 13: 913030, 2022.
Article En | MEDLINE | ID: mdl-35734423

Active thermogenic adipocytes avidly consume energy substrates like fatty acids and glucose to maintain body temperature upon cold exposure. Despite strong evidence for the involvement of brown adipose tissue (BAT) in controlling systemic energy homeostasis upon nutrient excess, it is unclear how the activity of brown adipocytes is regulated in times of nutrient scarcity. Therefore, this study aimed to scrutinize factors that modulate BAT activity to balance thermogenic and energetic needs upon simultaneous fasting and cold stress. For an unbiased view, we performed transcriptomic and miRNA sequencing analyses of BAT from acutely fasted (24 h) mice under mild cold exposure. Combining these data with in-depth bioinformatic analyses and in vitro gain-of-function experiments, we define a previously undescribed axis of p53 inducing miR-92a-1-5p transcription that is highly upregulated by fasting in thermogenic adipocytes. p53, a fasting-responsive transcription factor, was previously shown to control genes involved in the thermogenic program and miR-92a-1-5p was found to negatively correlate with human BAT activity. Here, we identify fructose transporter Slc2a5 as one direct downstream target of this axis and show that fructose can be taken up by and metabolized in brown adipocytes. In sum, this study delineates a fasting-induced pathway involving p53 that transactivates miR-92a-1-5p, which in turn decreases Slc2a5 expression, and suggests fructose as an energy substrate in thermogenic adipocytes.

13.
Metabolites ; 12(4)2022 Mar 25.
Article En | MEDLINE | ID: mdl-35448475

Hepatitis B virus (HBV) infection is a worldwide health burden. Metabolomics analysis has revealed HBV-induced metabolism dysregulation in liver tissues and hepatocytes. However, as an infectious disease, the tissue-specific landscape of metabolic profiles of HBV infection remains unclear. To fill this gap, we applied untargeted nuclear magnetic resonance (NMR) metabolomic analysis of the heart, liver, spleen, lung, kidney, pancreas, and intestine (duodenum, jejunum, ileum) in HBV-transgenic mice and their wild-type littermates. Strikingly, we found systemic metabolic alterations induced by HBV in liver and extrahepatic organs. Significant changes in metabolites have been observed in most tissues of HBV-transgenic mice, except for ileum. The metabolic changes may provide novel therapeutic targets for the treatment of HBV infection. Moreover, tissue-specific metabolic profiles could speed up the study of HBV induced systemic metabolic reprogramming, which could help follow the progression of HBV infection and explain the underlying pathogenesis.

14.
Small ; 18(14): e2107370, 2022 Apr.
Article En | MEDLINE | ID: mdl-35152557

Constructing hierarchical micro/nanostructures as anodes for sodium ion batteries is an important approach for exploiting efficient energy storage devices. Herein, sandwich structure hierarchical nanofibers composed of hollow carbon fibers as the substrate, and MoS2 as the interlayer with Co and/or ZnS nanoparticles anchoring in carbon skeletons as the outer shell (carbon nanofiber/MoS2 /Co-ZnS⊂NC) are prepared via a multistep reaction strategy. Profiting from the unique hierarchical structure, abundant migration channels of Na+ , and multicomponent synergistic effects, the rapid diffusion kinetics are ensured and the utilization of active materials is maximized. The coaxial structure can evenly disperse volumetric strain, making structural stability guaranteed. Hierarchical nanofibers deliver a high reversible capacity of 352.3 mAh g-1 at 5.0 A g-1 over 3000 cycles. A discharge capacity of 182.5 mAh g-1 is retained even after 10 000 cycles at 10.0 A g-1 as well as a high rate capacity of 202.0 mAh g-1 up to 30 A g-1 . The optimal atomic ratio of Co element is further verified by the kinetic analysis. The full-cells assembled with Na3 V2 (PO4 )3 cathode provide a high capacity of 179.2 mAh g-1 at 1.0 A g-1 for 500 cycles. Combining in situ and ex situ characterizations and theoretical calculations, possible sodium storage mechanisms and the origin of superior electrochemical properties are revealed.

15.
Front Mol Biosci ; 8: 689687, 2021.
Article En | MEDLINE | ID: mdl-34738012

Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications.

16.
Genes Environ ; 43(1): 39, 2021 Sep 22.
Article En | MEDLINE | ID: mdl-34551827

Due to the complex structure and function of central nervous system (CNS), human CNS in vitro modeling is still a great challenge. Neurotoxicity testing of environmental chemicals mainly depends on the traditional animal models, which have various limitations such as species differences, expensive and time-consuming. Meanwhile, in vitro two-dimensional (2D) cultured cells or three-dimensional (3D) cultured neurospheres cannot fully simulate complex 3D structure of neural tissues. Recent advancements in neural organoid systems provides excellent models for the testing of environmental chemicals that affect the development of human CNS. Neural organoids derived from hPSCs not only can simulate the process of CNS development, including early stage neural tube formation, neuroepithelium differentiation and regional specification, but also its 3D structure, thus can be used to evaluate the effect of chemicals on differentiation and morphogenesis. Here, we provide a review of recent progress in the methods of culturing neural organoids and their applications in neurotoxicity testing of environmental chemicals. We conclude by highlighting challenge and future directions in neurotoxicity testing based on neural organoids.

17.
ACS Sens ; 6(8): 2911-2919, 2021 08 27.
Article En | MEDLINE | ID: mdl-34282892

Sensitive, selective, rapid, and label-free detection of pathogenic bacteria with high generality is of great importance for clinical diagnosis, biosecurity, and public health. However, most traditional approaches, such as microbial cultures, are time-consuming and laborious. To circumvent these problems, surface-enhanced Raman spectroscopy (SERS) appears to be a powerful technique to characterize bacteria at the single-cell level. Here, by SERS, we report a strategy for the rapid and specific detection of 22 strains of common pathogenic bacteria. A novel and high-quality silver nanorod SERS substrate, prepared by the facile interface self-assembly method, was utilized to acquire the chemical fingerprint information of pathogens with improved sensitivity. We also applied the mathematical analysis methods, such as the t-test and receiver operating characteristic method, to determine the Raman features of these 22 strains and demonstrate the clear identification of most bacteria (20 strains) from the rest and also the reliability of this SERS sensor. This rapid and specific strategy for wide-range bacterial detection offers significant advantages over existing approaches and sets the base for automated and onsite detection of pathogenic bacteria in a complex real-life situation.


Metal Nanoparticles , Spectrum Analysis, Raman , Bacteria , Reproducibility of Results , Silver
18.
BMC Bioinformatics ; 22(1): 238, 2021 May 11.
Article En | MEDLINE | ID: mdl-33971811

BACKGROUND: tRNA-derived fragments have been reported to be key regulatory factors in human tumors. However, their roles in the progression of multiple myeloma remain unknown. RESULTS: This study employed RNA-sequencing to explore the expression profiles of tRFs/tiRNAs in new diagnosed MM and relapsed/refractory MM samples. The expression of selected tRFs/tiRNAs were further validated in clinical specimens and myeloma cell lines by qPCR. Bioinformatic analysis was performed to predict their roles in multiple myeloma progression.We identified 10 upregulated tRFs/tiRNAs and 16 downregulated tRFs/tiRNAs. GO enrichment and KEGG pathway analysis were performed to analyse the functions of 1 significantly up-regulated and 1 significantly down-regulated tRNA-derived fragments. tRFs/tiRNAs may be involved in MM progression and drug-resistance. CONCLUSION: tRFs/tiRNAs were dysregulated and could be potential biomarkers for relapsed/refractory MM.


Multiple Myeloma , Biomarkers , Computational Biology , Humans , Multiple Myeloma/genetics , RNA, Transfer/genetics
19.
Protein Sci ; 30(7): 1438-1453, 2021 07.
Article En | MEDLINE | ID: mdl-33991007

Intrinsically disordered proteins and proteins containing intrinsically disordered regions are highly abundant in the proteome of eukaryotes and are extensively involved in essential biological functions. More recently, their role in the organization of biomolecular condensates has become evident and along with their misregulation in several neurologic disorders. Currently, most studies involving these proteins are carried out in vitro and using purified proteins. Given that in cells, condensate-forming proteins are exposed to high, millimolar concentrations of cellular metabolites, we aimed to reveal the interactions of cellular metabolites and a representative condensate-forming protein. Here, using the arginine-glycine/arginine-glycine-glycine (RG/RGG)-rich cold inducible RNA binding protein (CIRBP) as paradigm, we studied binding of the cellular metabolome to CIRBP. We found that most of the highly abundant cellular metabolites, except nucleotides, do not directly bind to CIRBP. ATP, ADP, and AMP as well as NAD+ , NADH, NADP+ , and NADPH directly interact with CIRBP, involving both the folded RNA-recognition motif and the disordered RG/RGG region. ATP binding inhibited RNA-driven phase separation of CIRBP. Thus, it might be beneficial to include cellular metabolites in in vitro liquid-liquid phase separation studies of RG/RGG and other condensate-forming proteins in order to better mimic the cellular environment in the future.


Adenosine Triphosphate/chemistry , Intrinsically Disordered Proteins/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Amino Acid Motifs , Humans
20.
Cancers (Basel) ; 13(8)2021 Apr 20.
Article En | MEDLINE | ID: mdl-33924061

Hepatocellular carcinoma (HCC) is a common malignancy with poor prognosis, high morbidity and mortality concerning with lack of effective diagnosis and high postoperative recurrence. Similar with other cancers, HCC cancer cells have to alter their metabolism to adapt to the changing requirements imposed by the environment of the growing tumor. In less vascularized regions of tumor, cancer cells experience hypoxia and nutrient starvation. Here, we show that HCC undergoes a global metabolic reprogramming during tumor growth. A combined proteomics and metabolomics analysis of paired peritumoral and tumor tissues from 200 HCC patients revealed liver-specific metabolic reprogramming and metabolic alterations with increasing tumor sizes. Several proteins and metabolites associated with glycolysis, the tricarboxylic acid cycle and pyrimidine synthesis were found to be differentially regulated in serum, tumor and peritumoral tissue with increased tumor sizes. Several prognostic metabolite biomarkers involved in HCC metabolic reprogramming were identified and integrated with clinical and pathological data. We built and validated this combined model to discriminate against patients with different recurrence risks. An integrated and comprehensive metabolomic analysis of HCC is provided by our present work. Metabolomic alterations associated with the advanced stage of the disease and poor clinical outcomes, were revealed. Targeting cancer metabolism may deliver effective therapies for HCC.

...