Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AMIA Jt Summits Transl Sci Proc ; 2024: 515-524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827062

RESUMEN

Clinical notes are full of ambiguous medical abbreviations. Contextual knowledge has been leveraged by recent learning-based approaches for sense disambiguation. Previous findings indicated that structural elements of clinical notes entail useful characteristics for informing different interpretations of abbreviations, yet they have remained underutilized and have not been fully investigated. To our best knowledge, the only study exploring note structures simply enumerated the headers in the notes, where such representations are not semantically meaningful. This paper describes a learning-based approach using the note structure represented by the semantic types predefined in Unified Medical Language System (UMLS). We evaluated the representation in addition to the widely used N-gram with three learning models on two different datasets. Experiments indicate that our feature augmentation consistently improved model performance for abbreviation disambiguation, with the optimal F1 score of 0.93.

2.
J Biomed Inform ; 154: 104649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697494

RESUMEN

OBJECTIVE: Automated identification of eligible patients is a bottleneck of clinical research. We propose Criteria2Query (C2Q) 3.0, a system that leverages GPT-4 for the semi-automatic transformation of clinical trial eligibility criteria text into executable clinical database queries. MATERIALS AND METHODS: C2Q 3.0 integrated three GPT-4 prompts for concept extraction, SQL query generation, and reasoning. Each prompt was designed and evaluated separately. The concept extraction prompt was benchmarked against manual annotations from 20 clinical trials by two evaluators, who later also measured SQL generation accuracy and identified errors in GPT-generated SQL queries from 5 clinical trials. The reasoning prompt was assessed by three evaluators on four metrics: readability, correctness, coherence, and usefulness, using corrected SQL queries and an open-ended feedback questionnaire. RESULTS: Out of 518 concepts from 20 clinical trials, GPT-4 achieved an F1-score of 0.891 in concept extraction. For SQL generation, 29 errors spanning seven categories were detected, with logic errors being the most common (n = 10; 34.48 %). Reasoning evaluations yielded a high coherence rating, with the mean score being 4.70 but relatively lower readability, with a mean of 3.95. Mean scores of correctness and usefulness were identified as 3.97 and 4.37, respectively. CONCLUSION: GPT-4 significantly improves the accuracy of extracting clinical trial eligibility criteria concepts in C2Q 3.0. Continued research is warranted to ensure the reliability of large language models.


Asunto(s)
Ensayos Clínicos como Asunto , Humanos , Procesamiento de Lenguaje Natural , Programas Informáticos , Selección de Paciente
3.
J Biomed Inform ; 153: 104640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608915

RESUMEN

Evidence-based medicine promises to improve the quality of healthcare by empowering medical decisions and practices with the best available evidence. The rapid growth of medical evidence, which can be obtained from various sources, poses a challenge in collecting, appraising, and synthesizing the evidential information. Recent advancements in generative AI, exemplified by large language models, hold promise in facilitating the arduous task. However, developing accountable, fair, and inclusive models remains a complicated undertaking. In this perspective, we discuss the trustworthiness of generative AI in the context of automated summarization of medical evidence.


Asunto(s)
Inteligencia Artificial , Medicina Basada en la Evidencia , Humanos , Confianza , Procesamiento de Lenguaje Natural
4.
Appl Clin Inform ; 15(2): 306-312, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442909

RESUMEN

OBJECTIVES: Large language models (LLMs) like Generative pre-trained transformer (ChatGPT) are powerful algorithms that have been shown to produce human-like text from input data. Several potential clinical applications of this technology have been proposed and evaluated by biomedical informatics experts. However, few have surveyed health care providers for their opinions about whether the technology is fit for use. METHODS: We distributed a validated mixed-methods survey to gauge practicing clinicians' comfort with LLMs for a breadth of tasks in clinical practice, research, and education, which were selected from the literature. RESULTS: A total of 30 clinicians fully completed the survey. Of the 23 tasks, 16 were rated positively by more than 50% of the respondents. Based on our qualitative analysis, health care providers considered LLMs to have excellent synthesis skills and efficiency. However, our respondents had concerns that LLMs could generate false information and propagate training data bias.Our survey respondents were most comfortable with scenarios that allow LLMs to function in an assistive role, like a physician extender or trainee. CONCLUSION: In a mixed-methods survey of clinicians about LLM use, health care providers were encouraging of having LLMs in health care for many tasks, and especially in assistive roles. There is a need for continued human-centered development of both LLMs and artificial intelligence in general.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Instituciones de Salud , Personal de Salud , Lenguaje
5.
J Am Med Inform Assoc ; 31(5): 1163-1171, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38471120

RESUMEN

OBJECTIVES: Extracting PICO (Populations, Interventions, Comparison, and Outcomes) entities is fundamental to evidence retrieval. We present a novel method, PICOX, to extract overlapping PICO entities. MATERIALS AND METHODS: PICOX first identifies entities by assessing whether a word marks the beginning or conclusion of an entity. Then, it uses a multi-label classifier to assign one or more PICO labels to a span candidate. PICOX was evaluated using 1 of the best-performing baselines, EBM-NLP, and 3 more datasets, ie, PICO-Corpus and randomized controlled trial publications on Alzheimer's Disease (AD) or COVID-19, using entity-level precision, recall, and F1 scores. RESULTS: PICOX achieved superior precision, recall, and F1 scores across the board, with the micro F1 score improving from 45.05 to 50.87 (P ≪.01). On the PICO-Corpus, PICOX obtained higher recall and F1 scores than the baseline and improved the micro recall score from 56.66 to 67.33. On the COVID-19 dataset, PICOX also outperformed the baseline and improved the micro F1 score from 77.10 to 80.32. On the AD dataset, PICOX demonstrated comparable F1 scores with higher precision when compared to the baseline. CONCLUSION: PICOX excels in identifying overlapping entities and consistently surpasses a leading baseline across multiple datasets. Ablation studies reveal that its data augmentation strategy effectively minimizes false positives and improves precision.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , Procesamiento de Lenguaje Natural
6.
Database (Oxford) ; 20222022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35616099

RESUMEN

The discovery of drug-drug interactions (DDIs) that have a translational impact among in vitro pharmacokinetics (PK), in vivo PK and clinical outcomes depends largely on the quality of the annotated corpus available for text mining. We have developed a new DDI corpus based on an annotation scheme that builds upon and extends previous ones, where an abstract is fragmented and each fragment is then annotated along eight dimensions, namely, focus, polarity, certainty, evidence, directionality, study type, interaction type and mechanism. The guideline for defining these dimensions has undergone refinement during the annotation process. Our DDI corpus comprises 900 positive DDI abstracts and 750 that are not directly relevant to DDI. The abstracts in corpus are separated into eight categories of DDI or non-DDI evidence: DDI with pharmacokinetic (PK) mechanism, in vivo DDI PK, DDI clinical, drug-nutrition interaction, single drug, not drug related, in vitro pharmacodynamic (PD) and case report. Seven annotators, three annotators with drug-interaction research experience and four annotators with less drug-interaction research experience independently annotated the DDI corpus, where two researchers independently annotated each abstract. After two rounds of annotations with additional training in between, agreement improved from (0.79, 0.96, 0.86, 0.70, 0.91, 0.65, 0.78, 0.90) to (0.93, 0.99, 0.96, 0.94, 0.95, 0.93, 0.96, 0.97) for focus, certainty, evidence, study type, interaction type, mechanisms, polarity and direction, respectively. The novice-level annotators improved from 0.83 to 0.96, while the expert-level annotators stayed in high performance with some improvement, from 0.90 to 0.96. In summary, we achieved 96% agreement among each pair of annotators with regard to the eight dimensions. The annotated corpus is now available to the community for inclusion in their text-mining pipelines. Database URL https://github.com/zha204/DDI-Corpus-Database/tree/master/DDI%20corpus.


Asunto(s)
Minería de Datos , Minería de Datos/métodos , Bases de Datos Factuales , Interacciones Farmacológicas , Humanos
7.
Surv Geophys ; 42(6): 1401-1423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815609

RESUMEN

Abstract: Distributed acoustic sensing (DAS) is a novel seismic observation system developed in recent years that can realize ultrahigh density observations and has attracted extensive attention in the field of seismology. DAS uses fiber-optic cables as sensing units, which are easy to incorporate with urban telecommunication fiber-optic cables for seismological observations. Compared with seismometers, DAS has the advantages of being rapidly deployed and recyclable, being able to acquire dense observations at low cost, and convenient data collection. In this study, a 5.2 km long telecom fiber-optic internet cable was utilized as a DAS array in an urban area to record ambient noise, and the noise cross-correlation function (NCF) was calculated. There are two different distribution types of ambient noise sources along the cable, regular along-road trucks (Taihe Road) and complex ambient noise, including human activities and traffic sources along and across the Jinniu road. In the first case, we constructed a 2D S-wave velocity model down to 100 m depth and a low-velocity zone was revealed. The S-wave model well explained the traffic signal along the Taihe road and the low-velocity zone is also consistent with the results obtained from co-located geophone arrays. In the second case, due to the complexity of the traffic noise distribution, empirical Green's functions were barely achieved. Therefore, we performed a synthetic test obtaining different NCFs with different source distributions, and two specific cases that dominate the NCF results were matched. Finally, we obtained the traffic noise distribution along the road, which is consistent with the power spectra density of the ambient noise. In conclusion, by combining DAS and urban fiber-optic internet cables with urban traffic noise, we can effectively reveal the traffic activities and image shallow structures with high resolution, which could offer a reference for urban construction and disaster prevention. Article Highlights: DAS turns the urban fiber-optic internet cables into ultra-dense permanent seismic observation arraysWe revealed a high-resolution shallow structure using urban fiber-optic internet cablesWe obtained the distribution of traffic activities along the road.

9.
Bioinformatics ; 37(Suppl_1): i468-i476, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34252939

RESUMEN

MOTIVATION: Biomedical research findings are typically disseminated through publications. To simplify access to domain-specific knowledge while supporting the research community, several biomedical databases devote significant effort to manual curation of the literature-a labor intensive process. The first step toward biocuration requires identifying articles relevant to the specific area on which the database focuses. Thus, automatically identifying publications relevant to a specific topic within a large volume of publications is an important task toward expediting the biocuration process and, in turn, biomedical research. Current methods focus on textual contents, typically extracted from the title-and-abstract. Notably, images and captions are often used in publications to convey pivotal evidence about processes, experiments and results. RESULTS: We present a new document classification scheme, using both image and caption information, in addition to titles-and-abstracts. To use the image information, we introduce a new image representation, namely Figure-word, based on class labels of subfigures. We use word embeddings for representing captions and titles-and-abstracts. To utilize all three types of information, we introduce two information integration methods. The first combines Figure-words and textual features obtained from captions and titles-and-abstracts into a single larger vector for document representation; the second employs a meta-classification scheme. Our experiments and results demonstrate the usefulness of the newly proposed Figure-words for representing images. Moreover, the results showcase the value of Figure-words, captions and titles-and-abstracts in providing complementary information for document classification; these three sources of information when combined, lead to an overall improved classification performance. AVAILABILITY AND IMPLEMENTATION: Source code and the list of PMIDs of the publications in our datasets are available upon request.


Asunto(s)
Investigación Biomédica , Bases de Datos Factuales
10.
Database (Oxford) ; 20192019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31032839

RESUMEN

Published literature is an important source of knowledge supporting biomedical research. Given the large and increasing number of publications, automated document classification plays an important role in biomedical research. Effective biomedical document classifiers are especially needed for bio-databases, in which the information stems from many thousands of biomedical publications that curators must read in detail and annotate. In addition, biomedical document classification often amounts to identifying a small subset of relevant publications within a much larger collection of available documents. As such, addressing class imbalance is essential to a practical classifier. We present here an effective classification scheme for automatically identifying papers among a large pool of biomedical publications that contain information relevant to a specific topic, which the curators are interested in annotating. The proposed scheme is based on a meta-classification framework using cluster-based under-sampling combined with named-entity recognition and statistical feature selection strategies. We examined the performance of our method over a large imbalanced data set that was originally manually curated by the Jackson Laboratory's Gene Expression Database (GXD). The set consists of more than 90 000 PubMed abstracts, of which about 13 000 documents are labeled as relevant to GXD while the others are not relevant. Our results, 0.72 precision, 0.80 recall and 0.75 f-measure, demonstrate that our proposed classification scheme effectively categorizes such a large data set in the face of data imbalance.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Difusión de la Información , Polimorfismo de Nucleótido Simple , Lenguajes de Programación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...