Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Biol Chem ; 299(4): 103052, 2023 04.
Article En | MEDLINE | ID: mdl-36813236

Phytoplasmas are insect-borne bacterial pathogens capable of secreting effectors into host cells and interfering with host plant defense response processes. Previous studies have found that the Candidatus Phytoplasma tritici effector SWP12 binds to and destabilizes the wheat transcription factor TaWRKY74, increasing wheat susceptibility to phytoplasmas. Here, we used a Nicotiana benthamiana transient expression system to identify two key functional sites of SWP12 and screened a series of truncated mutants and amino acid substitution mutants to determine whether they inhibit Bax-induced cell death. Using a subcellular localization assay and online structure analysis websites, we found that structure rather than intracellular localization probably affects the function of SWP12. D33A and P85H are two inactive substitution mutants, neither of which interacts with TaWRKY74, and P85H does not inhibit Bax-induced cell death, suppress flg22-triggered reactive oxygen species (ROS) bursts, degrade TaWRKY74, or promote phytoplasma accumulation. D33A can weakly suppress Bax-induced cell death and flg22-triggered ROS bursts and degrade a portion of TaWRKY74 and weakly promote phytoplasma accumulation. S53L, CPP, and EPWB are three SWP12 homolog proteins from other phytoplasmas. Sequence analysis revealed that D33 was conserved in these proteins, and they exhibited the same polarity at P85. Transient expression in N. benthamiana showed that these proteins could inhibit Bax-induced cell death and suppress ROS bursts. Our findings clarified that P85 and D33 of SWP12 play critical and minor roles, respectively, in suppressing the plant defense response and that they play a preliminary role in determining the functions of homologous proteins.


Phytoplasma , Phytoplasma/chemistry , Phytoplasma/metabolism , Bacterial Proteins/metabolism , Amino Acids/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism , Plants/metabolism , Plant Diseases/microbiology
2.
Plant J ; 112(6): 1473-1488, 2022 12.
Article En | MEDLINE | ID: mdl-36380696

'Candidatus Phytoplasma tritici' ('Ca. P. tritici') is an insect-borne obligate pathogen that infects wheat (Triticum aestivum) causing wheat blue dwarf disease, and leads to yield losses. SWP12 is a potential effector secreted by 'Ca. P. tritici' that manipulates host processes to create an environment conducive to phytoplasma colonization, but the detailed mechanism of action remains to be investigated. In this study, the expression of SWP12 weakened the basal immunity of Nicotiana benthamiana and promoted leaf colonization by Phytophthora parasitica, Sclerotinia sclerotiorum, and tobacco mild green mosaic virus. Moreover, the expression of SWP12 in wheat plants promoted phytoplasma colonization. Triticum aestivum WRKY74 and N. benthamiana WRKY17 were identified as host targets of SWP12. The expression of TaWRKY74 triggered reactive oxygen species bursts, upregulated defense-related genes, and decreased TaCRR6 transcription, leading to reductions in NADH dehydrogenase complex (NDH) activity. Expression of TaWRKY74 in wheat increased plant resistance to 'Ca. P. tritici', and silencing of TaWRKY74 enhanced plant susceptibility, which indicates that TaWRKY74 is a positive regulator of wheat resistance to 'Ca. P. tritici'. We showed that SWP12 weakens plant resistance and promotes 'Ca. P. tritici' colonization by destabilizing TaWRKY74.


Phytoplasma , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Diseases , Disease Resistance/genetics
3.
Plant Dis ; 106(5): 1321-1329, 2022 May.
Article En | MEDLINE | ID: mdl-34941370

Kiwifruit (Actinidia spp.) is an economically important fruit crop worldwide. Before 2010, kiwifruit viruses had not received much attention; since then, more than 20 viruses infecting kiwifruit have been discovered. Some of these viruses cause severe yellowing, mosaic, necrosis, ringspots, and other symptoms on leaves, seriously impacting yield and quality. Many of these viruses are widely distributed. This review summarizes recent research advances in the identification, genomic variation, distribution, transmission, detection, incidence, prevention, and control of kiwifruit viruses and proposes directions for future research. Using virus-tested propagation material is the most economical and effective method for controlling kiwifruit viruses.


Actinidia , Viruses , Fruit/genetics , Plant Leaves
...