Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 95(9): 896-908, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913973

RESUMEN

BACKGROUND: Circular RNAs are highly enriched in the synapses of the mammalian brain and play important roles in neurological function by acting as molecular sponges of microRNAs. circAnk3 is derived from the 11th intron of the ankyrin-3 gene, Ank3, a strong genetic risk factor for neuropsychiatric disorders; however, the function of circAnk3 remains elusive. In this study, we investigated the function of circAnk3 and its downstream regulatory network for target genes in the hippocampus of mice. METHODS: The DNA sequence from which circAnk3 is generated was modified using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) technology, and neurobehavioral tests (anxiety and depression-like behaviors, social behaviors) were performed in circAnk3+/- mice. A series of molecular and biochemical assays were used to investigate the function of circAnk3 as a microRNA sponge and its downstream regulatory network for target genes. RESULTS: circAnk3+/- mice exhibited both anxiety-like behaviors and social deficits. circAnk3 was predominantly located in the cytoplasm of neuronal cells and functioned as a miR-7080-3p sponge to regulate the expression of Iqgap1. Inhibition of miR-7080-3p or restoration of Iqgap1 in the hippocampus ameliorated the behavioral deficits of circAnk3+/- mice. Furthermore, circAnk3 deficiency decreased the expression of the NMDA receptor subunit GluN2a and impaired the structural plasticity of dendritic synapses in the hippocampus. CONCLUSIONS: Our results reveal an important role of the circAnk3/miR-7080-3p/IQGAP1 axis in maintaining the structural plasticity of hippocampal synapses. circAnk3 might offer new insights into the involvement of circular RNAs in neuropsychiatric disorders.


Asunto(s)
MicroARNs , ARN Circular , Ratones , Animales , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Ansiedad/genética , Mamíferos/genética , Mamíferos/metabolismo
2.
Cell Biol Toxicol ; 39(3): 771-793, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34458952

RESUMEN

Clarithromycin (CLA) has been widely used in the treatment of bacterial infection. Research reveals the adverse effects on the central nervous system among patients receiving CLA treatment; whereas, a relevant underlying mechanism remains considerably unclear. According to our research, an integrated lipidomic and transcriptomic analysis was applied to explore the effect of CLA on neurobehavior. CLA treatment caused anxiety-like behaviors dose-dependently during open field as well as elevated plus maze trials on mice. Transcriptomes and LC/MS-MS-based metabolomes were adopted for investigating how CLA affected lipidomic profiling as well as metabolic pathway of the cerebral cortex. CLA exposure greatly disturbed glycerophospholipid metabolism and the carbon chain length of fatty acids. By using whole transcriptome sequencing, we found that CLA significantly downregulated the mRNA expression of CEPT1 and CHPT1, two key enzymes involved in the synthesis of glycerophospholipids, supporting the findings from the lipidomic profiling. Also, CLA causes changes in neuronal morphology and function in vitro, which support the existing findings concerning neurobehavior in vivo. We speculate that altered glycerophospholipid metabolism may be involved in the neurobehavioral effect of CLA. Our findings contribute to understanding the mechanisms of CLA-induced adverse effects on the central nervous system. 1. Clarithromycin treatment caused anxiety-like behavior with dose-dependent response both in the open field and elevated plus maze test in mice; 2. Clarithromycin exposing predominately disturbed the metabolism of glycerophospholipids in the cerebral cortex of mice; 3. Clarithromycin application remarkably attenuated CEPT1 and CHPT1 gene expression, which participate in the last step in the synthesis of glycerophospholipids; 4. The altered glycerophospholipid metabolomics may be involved in the abnormal neurobehavior caused by clarithromycin.


Asunto(s)
Claritromicina , Lipidómica , Animales , Ratones , Claritromicina/farmacología , Transcriptoma , Glicerofosfolípidos/metabolismo , Corteza Cerebral/metabolismo
3.
Neuropharmacology ; 213: 109076, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500677

RESUMEN

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are key regulators during the process of synaptic plasticity in major depression disorder (MDD). Synapse differentiation-induced gene 1 (SynDIG1) functions as an atypical AMPAR auxiliary subunit and regulates synaptic AMPAR content; however, the role of SynDIG1 in MDD remains elusive. In this study, we found that the SynDIG1 expression was significantly increased in the neurons of the nucleus accumbens (NAc) of male mice after chronic social defeat stress (CSDS). CSDS enhanced SynDIG1-GluA2 binding and promoted the surface expression of AMPAR subunit GluA2 in the NAc. Knockdown of SynDIG1 decreased the surface expression of GluA2 and reversed the alteration of dendrite spines in the neurons, eventually alleviating the depressive-like behaviors of the stressed mice. Moreover, intra-NAc injection of IP12, a specific peptide to disrupt the interaction of SynDIG1 with GluA2, rescued depressive-like behaviors. Collectively, SynDIG1 regulates the surface expression of GluA2 and dendritic remodeling in the NAc of male mice under CSDS, thus mediating the depressive-like behaviors.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Accumbens , Receptores AMPA , Animales , Depresión/etiología , Masculino , Ratones , Núcleo Accumbens/metabolismo , Receptores AMPA/metabolismo , Derrota Social , Sinapsis/metabolismo
4.
Acta Pharmacol Sin ; 43(2): 295-306, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34522005

RESUMEN

Behavioral sensitization is a progressive increase in locomotor or stereotypic behaviours in response to drugs. It is believed to contribute to the reinforcing properties of drugs and to play an important role in relapse after cessation of drug abuse. However, the mechanism underlying this behaviour remains poorly understood. In this study, we showed that mTOR signaling was activated during the expression of behavioral sensitization to cocaine and that intraperitoneal or intra-nucleus accumbens (NAc) treatment with rapamycin, a specific mTOR inhibitor, attenuated cocaine-induced behavioural sensitization. Cocaine significantly modified brain lipid profiles in the NAc of cocaine-sensitized mice and markedly elevated the levels of phosphatidylinositol-4-monophosphates (PIPs), including PIP, PIP2, and PIP3. The behavioural effect of cocaine was attenuated by intra-NAc administration of LY294002, an AKT-specific inhibitor, suggesting that PIPs may contribute to mTOR activation in response to cocaine. An RNA-sequencing analysis of the downstream effectors of mTOR signalling revealed that cocaine significantly decreased the expression of SynDIG1, a known substrate of mTOR signalling, and decreased the surface expression of GluA2. In contrast, AAV-mediated SynDIG1 overexpression in NAc attenuated intracellular GluA2 internalization by promoting the SynDIG1-GluA2 interaction, thus maintaining GluA2 surface expression and repressing cocaine-induced behaviours. In conclusion, NAc SynDIG1 may play a negative regulatory role in cocaine-induced behavioural sensitization by regulating synaptic surface expression of GluA2.


Asunto(s)
Proteínas Portadoras/metabolismo , Cocaína/farmacología , Núcleo Accumbens/efectos de los fármacos , Receptores AMPA/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Biotinilación , Western Blotting , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo
5.
ACS Chem Neurosci ; 12(23): 4449-4464, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762393

RESUMEN

Cefepime exhibits a broad spectrum of antimicrobial activity and thus is a widely used treatment for severe bacterial infections. Adverse effects on the central nervous system (CNS) have been reported in patients treated with cefepime. Current explanation for the adverse neurobehavioral effect of cefepime is mainly attributed to its ability to cross the blood-brain barrier and competitively bind to the GABAergic receptor; however, the underlying mechanism is largely unknown. In this study, mice were intraperitoneally administered 80 mg/kg cefepime for different periods, followed by neurobehavioral tests and a brain lipidomic analysis. LC/MS-MS-based metabolomics was used to investigate the effect of cefepime on the brain lipidomic profile and metabolic pathways. Repeated cefepime treatment time-dependently caused anxiety-like behaviors, which were accompanied by reduced locomotor activity in the open field test. Cefepime profoundly altered the lipid profile, acyl chain length, and unsaturation of fatty acids in the corpus striatum, and glycerophospholipids accounted for a large proportion of those significantly modified lipids. In addition, cefepime treatment caused obvious alteration in the lipid-enriched membrane structure, neurites, mitochondria, and synaptic vesicles of primary cultured striatal neurons; moreover, the spontaneous electrical activity of striatal neurons was significantly reduced. Collectively, cefepime reprograms glycerophospholipid metabolism in the corpus striatum, which may interfere with neuronal structure and activity, eventually leading to aberrant neurobehaviors in mice.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Animales , Cefepima , Cuerpo Estriado , Glicerofosfolípidos , Humanos , Ratones
6.
Neurosci Bull ; 37(12): 1683-1702, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34491535

RESUMEN

Drug-associated reward memories are conducive to intense craving and often trigger relapse. Simvastatin has been shown to regulate lipids that are involved in memory formation but its influence on other cognitive processes is elusive. Here, we used a mass spectrometry-based lipidomic method to evaluate the impact of simvastatin on the mouse brain in a cocaine-induced reinstatement paradigm. We found that simvastatin blocked the reinstatement of cocaine-induced conditioned place preference (CPP) without affecting CPP acquisition. Specifically, only simvastatin administered during extinction prevented cocaine-primed reinstatement. Global lipidome analysis showed that the nucleus accumbens was the region with the greatest degree of change caused by simvastatin. The metabolism of fatty-acids, phospholipids, and triacylglycerol was profoundly affected. Simvastatin reversed most of the effects on phospholipids induced by cocaine. The correlation matrix showed that cocaine and simvastatin significantly reshaped the lipid metabolic pathways in specific brain regions. Furthermore, simvastatin almost reversed all changes in the fatty acyl profile and unsaturation caused by cocaine. In summary, pre-extinction treatment with simvastatin facilitates cocaine extinction and prevents cocaine relapse with brain lipidome remodeling.


Asunto(s)
Cocaína , Animales , Encéfalo , Condicionamiento Operante , Extinción Psicológica , Lipidómica , Masculino , Ratones , Simvastatina/farmacología , Simvastatina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...